Properties

Label 3.3_7e2_11e2_47e2.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 3 \cdot 7^{2} \cdot 11^{2} \cdot 47^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$39291483= 3 \cdot 7^{2} \cdot 11^{2} \cdot 47^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 17 x^{4} + 39 x^{3} + 134 x^{2} - 154 x - 1487 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 13.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 14 a + 2 + 22 a\cdot 31 + \left(2 a + 24\right)\cdot 31^{2} + \left(11 a + 5\right)\cdot 31^{3} + \left(18 a + 18\right)\cdot 31^{4} + \left(18 a + 21\right)\cdot 31^{5} + \left(16 a + 23\right)\cdot 31^{6} + \left(27 a + 11\right)\cdot 31^{7} + \left(26 a + 2\right)\cdot 31^{8} + \left(2 a + 26\right)\cdot 31^{9} + \left(12 a + 4\right)\cdot 31^{10} + \left(25 a + 27\right)\cdot 31^{11} + \left(10 a + 1\right)\cdot 31^{12} +O\left(31^{ 13 }\right)$
$r_{ 2 }$ $=$ $ 10 a + 6 + \left(24 a + 27\right)\cdot 31 + \left(30 a + 27\right)\cdot 31^{2} + \left(10 a + 19\right)\cdot 31^{3} + \left(11 a + 9\right)\cdot 31^{4} + \left(8 a + 28\right)\cdot 31^{5} + \left(2 a + 1\right)\cdot 31^{6} + \left(27 a + 5\right)\cdot 31^{7} + \left(a + 27\right)\cdot 31^{8} + \left(16 a + 15\right)\cdot 31^{9} + 7 a\cdot 31^{10} + \left(25 a + 25\right)\cdot 31^{11} + \left(12 a + 30\right)\cdot 31^{12} +O\left(31^{ 13 }\right)$
$r_{ 3 }$ $=$ $ 20 + 3\cdot 31^{2} + 27\cdot 31^{3} + 8\cdot 31^{4} + 19\cdot 31^{5} + 8\cdot 31^{6} + 5\cdot 31^{7} + 27\cdot 31^{8} + 24\cdot 31^{9} + 14\cdot 31^{10} + 23\cdot 31^{11} + 9\cdot 31^{12} +O\left(31^{ 13 }\right)$
$r_{ 4 }$ $=$ $ 21 a + 26 + \left(6 a + 3\right)\cdot 31 + 3\cdot 31^{2} + \left(20 a + 11\right)\cdot 31^{3} + \left(19 a + 21\right)\cdot 31^{4} + \left(22 a + 2\right)\cdot 31^{5} + \left(28 a + 29\right)\cdot 31^{6} + \left(3 a + 25\right)\cdot 31^{7} + \left(29 a + 3\right)\cdot 31^{8} + \left(14 a + 15\right)\cdot 31^{9} + \left(23 a + 30\right)\cdot 31^{10} + \left(5 a + 5\right)\cdot 31^{11} + 18 a\cdot 31^{12} +O\left(31^{ 13 }\right)$
$r_{ 5 }$ $=$ $ 17 a + 30 + \left(8 a + 30\right)\cdot 31 + \left(28 a + 6\right)\cdot 31^{2} + \left(19 a + 25\right)\cdot 31^{3} + \left(12 a + 12\right)\cdot 31^{4} + \left(12 a + 9\right)\cdot 31^{5} + \left(14 a + 7\right)\cdot 31^{6} + \left(3 a + 19\right)\cdot 31^{7} + \left(4 a + 28\right)\cdot 31^{8} + \left(28 a + 4\right)\cdot 31^{9} + \left(18 a + 26\right)\cdot 31^{10} + \left(5 a + 3\right)\cdot 31^{11} + \left(20 a + 29\right)\cdot 31^{12} +O\left(31^{ 13 }\right)$
$r_{ 6 }$ $=$ $ 12 + 30\cdot 31 + 27\cdot 31^{2} + 3\cdot 31^{3} + 22\cdot 31^{4} + 11\cdot 31^{5} + 22\cdot 31^{6} + 25\cdot 31^{7} + 3\cdot 31^{8} + 6\cdot 31^{9} + 16\cdot 31^{10} + 7\cdot 31^{11} + 21\cdot 31^{12} +O\left(31^{ 13 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,5)$
$(2,4)$
$(1,3,2)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,5)(2,4)(3,6)$ $-3$
$3$ $2$ $(3,6)$ $1$
$3$ $2$ $(2,4)(3,6)$ $-1$
$6$ $2$ $(1,2)(4,5)$ $1$
$6$ $2$ $(1,2)(3,6)(4,5)$ $-1$
$8$ $3$ $(1,3,2)(4,5,6)$ $0$
$6$ $4$ $(2,3,4,6)$ $1$
$6$ $4$ $(1,5)(2,3,4,6)$ $-1$
$8$ $6$ $(1,3,4,5,6,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.