Properties

Label 3.3_7_257e2.6t11.4
Dimension 3
Group $S_4\times C_2$
Conductor $ 3 \cdot 7 \cdot 257^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$1387029= 3 \cdot 7 \cdot 257^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 2 x^{4} + 9 x^{3} - x^{2} - 4 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 26 + 24\cdot 37 + 2\cdot 37^{2} + 10\cdot 37^{3} + 30\cdot 37^{4} + 7\cdot 37^{5} + 18\cdot 37^{6} + 36\cdot 37^{7} + 27\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 20 a + 32 + \left(18 a + 25\right)\cdot 37 + \left(14 a + 32\right)\cdot 37^{2} + \left(8 a + 27\right)\cdot 37^{3} + \left(10 a + 10\right)\cdot 37^{4} + \left(9 a + 17\right)\cdot 37^{5} + \left(13 a + 22\right)\cdot 37^{6} + \left(23 a + 2\right)\cdot 37^{7} + \left(24 a + 15\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 20 a + \left(18 a + 31\right)\cdot 37 + \left(14 a + 1\right)\cdot 37^{2} + \left(8 a + 27\right)\cdot 37^{3} + \left(10 a + 30\right)\cdot 37^{4} + \left(9 a + 29\right)\cdot 37^{5} + \left(13 a + 7\right)\cdot 37^{6} + \left(23 a + 28\right)\cdot 37^{7} + \left(24 a + 20\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 17 a + 6 + \left(18 a + 11\right)\cdot 37 + \left(22 a + 4\right)\cdot 37^{2} + \left(28 a + 9\right)\cdot 37^{3} + \left(26 a + 26\right)\cdot 37^{4} + \left(27 a + 19\right)\cdot 37^{5} + \left(23 a + 14\right)\cdot 37^{6} + \left(13 a + 34\right)\cdot 37^{7} + \left(12 a + 21\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 12 + 12\cdot 37 + 34\cdot 37^{2} + 26\cdot 37^{3} + 6\cdot 37^{4} + 29\cdot 37^{5} + 18\cdot 37^{6} + 9\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 17 a + 1 + \left(18 a + 6\right)\cdot 37 + \left(22 a + 35\right)\cdot 37^{2} + \left(28 a + 9\right)\cdot 37^{3} + \left(26 a + 6\right)\cdot 37^{4} + \left(27 a + 7\right)\cdot 37^{5} + \left(23 a + 29\right)\cdot 37^{6} + \left(13 a + 8\right)\cdot 37^{7} + \left(12 a + 16\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(2,3)(4,6)$
$(1,2,3)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,5)(2,4)(3,6)$ $-3$
$3$ $2$ $(1,5)$ $1$
$3$ $2$ $(1,5)(2,4)$ $-1$
$6$ $2$ $(2,3)(4,6)$ $-1$
$6$ $2$ $(1,5)(2,3)(4,6)$ $1$
$8$ $3$ $(1,2,3)(4,6,5)$ $0$
$6$ $4$ $(1,4,5,2)$ $-1$
$6$ $4$ $(1,6,5,3)(2,4)$ $1$
$8$ $6$ $(1,4,6,5,2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.