Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 26 + 24\cdot 37 + 2\cdot 37^{2} + 10\cdot 37^{3} + 30\cdot 37^{4} + 7\cdot 37^{5} + 18\cdot 37^{6} + 36\cdot 37^{7} + 27\cdot 37^{8} +O\left(37^{ 9 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 20 a + 32 + \left(18 a + 25\right)\cdot 37 + \left(14 a + 32\right)\cdot 37^{2} + \left(8 a + 27\right)\cdot 37^{3} + \left(10 a + 10\right)\cdot 37^{4} + \left(9 a + 17\right)\cdot 37^{5} + \left(13 a + 22\right)\cdot 37^{6} + \left(23 a + 2\right)\cdot 37^{7} + \left(24 a + 15\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 20 a + \left(18 a + 31\right)\cdot 37 + \left(14 a + 1\right)\cdot 37^{2} + \left(8 a + 27\right)\cdot 37^{3} + \left(10 a + 30\right)\cdot 37^{4} + \left(9 a + 29\right)\cdot 37^{5} + \left(13 a + 7\right)\cdot 37^{6} + \left(23 a + 28\right)\cdot 37^{7} + \left(24 a + 20\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 17 a + 6 + \left(18 a + 11\right)\cdot 37 + \left(22 a + 4\right)\cdot 37^{2} + \left(28 a + 9\right)\cdot 37^{3} + \left(26 a + 26\right)\cdot 37^{4} + \left(27 a + 19\right)\cdot 37^{5} + \left(23 a + 14\right)\cdot 37^{6} + \left(13 a + 34\right)\cdot 37^{7} + \left(12 a + 21\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 12 + 12\cdot 37 + 34\cdot 37^{2} + 26\cdot 37^{3} + 6\cdot 37^{4} + 29\cdot 37^{5} + 18\cdot 37^{6} + 9\cdot 37^{8} +O\left(37^{ 9 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 17 a + 1 + \left(18 a + 6\right)\cdot 37 + \left(22 a + 35\right)\cdot 37^{2} + \left(28 a + 9\right)\cdot 37^{3} + \left(26 a + 6\right)\cdot 37^{4} + \left(27 a + 7\right)\cdot 37^{5} + \left(23 a + 29\right)\cdot 37^{6} + \left(13 a + 8\right)\cdot 37^{7} + \left(12 a + 16\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(2,4)$ |
| $(2,3)(4,6)$ |
| $(1,2,3)(4,6,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $1$ | $2$ | $(1,5)(2,4)(3,6)$ | $-3$ |
| $3$ | $2$ | $(1,5)$ | $1$ |
| $3$ | $2$ | $(1,5)(2,4)$ | $-1$ |
| $6$ | $2$ | $(2,3)(4,6)$ | $1$ |
| $6$ | $2$ | $(1,5)(2,3)(4,6)$ | $-1$ |
| $8$ | $3$ | $(1,2,3)(4,6,5)$ | $0$ |
| $6$ | $4$ | $(1,4,5,2)$ | $1$ |
| $6$ | $4$ | $(1,6,5,3)(2,4)$ | $-1$ |
| $8$ | $6$ | $(1,4,6,5,2,3)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.