Properties

Label 3.3_7_257.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 3 \cdot 7 \cdot 257 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$5397= 3 \cdot 7 \cdot 257 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 18 x^{4} + 18 x^{3} + 101 x^{2} + 49 x - 35 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.3_7_257.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 15.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 13 + 5\cdot 19 + 9\cdot 19^{2} + 3\cdot 19^{3} + 9\cdot 19^{4} + 3\cdot 19^{5} + 15\cdot 19^{6} + 11\cdot 19^{7} + 9\cdot 19^{8} + 19^{9} + 19^{10} + 12\cdot 19^{11} + 19^{12} + 6\cdot 19^{13} + 13\cdot 19^{14} +O\left(19^{ 15 }\right)$
$r_{ 2 }$ $=$ $ 13 a + \left(4 a + 5\right)\cdot 19 + 2 a\cdot 19^{2} + \left(5 a + 3\right)\cdot 19^{3} + \left(10 a + 5\right)\cdot 19^{4} + \left(13 a + 14\right)\cdot 19^{5} + \left(7 a + 17\right)\cdot 19^{6} + \left(10 a + 1\right)\cdot 19^{7} + 19^{8} + \left(14 a + 17\right)\cdot 19^{9} + \left(17 a + 10\right)\cdot 19^{10} + \left(13 a + 12\right)\cdot 19^{11} + \left(8 a + 7\right)\cdot 19^{12} + \left(9 a + 1\right)\cdot 19^{13} + \left(8 a + 2\right)\cdot 19^{14} +O\left(19^{ 15 }\right)$
$r_{ 3 }$ $=$ $ 6 a + 13 + \left(14 a + 15\right)\cdot 19 + \left(16 a + 16\right)\cdot 19^{2} + \left(13 a + 5\right)\cdot 19^{3} + \left(8 a + 10\right)\cdot 19^{4} + \left(5 a + 17\right)\cdot 19^{5} + \left(11 a + 11\right)\cdot 19^{6} + \left(8 a + 4\right)\cdot 19^{7} + \left(18 a + 10\right)\cdot 19^{8} + \left(4 a + 11\right)\cdot 19^{9} + \left(a + 14\right)\cdot 19^{10} + \left(5 a + 8\right)\cdot 19^{11} + \left(10 a + 2\right)\cdot 19^{12} + \left(9 a + 2\right)\cdot 19^{13} + \left(10 a + 1\right)\cdot 19^{14} +O\left(19^{ 15 }\right)$
$r_{ 4 }$ $=$ $ 18 a + 10 + \left(4 a + 4\right)\cdot 19 + \left(15 a + 14\right)\cdot 19^{2} + \left(11 a + 5\right)\cdot 19^{3} + \left(2 a + 8\right)\cdot 19^{4} + \left(8 a + 3\right)\cdot 19^{5} + \left(17 a + 1\right)\cdot 19^{6} + 16 a\cdot 19^{7} + \left(5 a + 3\right)\cdot 19^{8} + \left(3 a + 18\right)\cdot 19^{9} + \left(8 a + 6\right)\cdot 19^{10} + \left(12 a + 18\right)\cdot 19^{11} + \left(8 a + 1\right)\cdot 19^{12} + \left(16 a + 1\right)\cdot 19^{13} + \left(18 a + 8\right)\cdot 19^{14} +O\left(19^{ 15 }\right)$
$r_{ 5 }$ $=$ $ 15 + 15\cdot 19 + 10\cdot 19^{2} + 17\cdot 19^{3} + 5\cdot 19^{4} + 9\cdot 19^{5} + 19^{7} + 3\cdot 19^{8} + 12\cdot 19^{9} + 11\cdot 19^{10} + 19^{11} + 7\cdot 19^{12} + 18\cdot 19^{13} + 2\cdot 19^{14} +O\left(19^{ 15 }\right)$
$r_{ 6 }$ $=$ $ a + 9 + \left(14 a + 10\right)\cdot 19 + \left(3 a + 5\right)\cdot 19^{2} + \left(7 a + 2\right)\cdot 19^{3} + \left(16 a + 18\right)\cdot 19^{4} + \left(10 a + 8\right)\cdot 19^{5} + \left(a + 10\right)\cdot 19^{6} + \left(2 a + 18\right)\cdot 19^{7} + \left(13 a + 10\right)\cdot 19^{8} + \left(15 a + 15\right)\cdot 19^{9} + \left(10 a + 11\right)\cdot 19^{10} + \left(6 a + 3\right)\cdot 19^{11} + \left(10 a + 17\right)\cdot 19^{12} + \left(2 a + 8\right)\cdot 19^{13} + 10\cdot 19^{14} +O\left(19^{ 15 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(5,6)$
$(1,2,3)(4,6,5)$
$(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,5)(2,4)(3,6)$$-3$
$3$$2$$(3,6)$$1$
$3$$2$$(1,5)(3,6)$$-1$
$6$$2$$(1,2)(4,5)$$-1$
$6$$2$$(1,2)(3,6)(4,5)$$1$
$8$$3$$(1,2,3)(4,6,5)$$0$
$6$$4$$(1,3,5,6)$$-1$
$6$$4$$(1,4,5,2)(3,6)$$1$
$8$$6$$(1,2,3,5,4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.