Properties

Label 3.3_61e2.6t6.2c1
Dimension 3
Group $A_4\times C_2$
Conductor $ 3 \cdot 61^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4\times C_2$
Conductor:$11163= 3 \cdot 61^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 4 x^{6} - 4 x^{5} + 8 x^{4} + 16 x^{3} + 18 x^{2} + 28 x + 13 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\times C_2$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{3} + 2 x + 11 $
Roots:
$r_{ 1 }$ $=$ $ 6\cdot 13 + 13^{2} + 3\cdot 13^{3} + 5\cdot 13^{4} + 10\cdot 13^{5} + 13^{7} + 13^{8} + 4\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 10 a^{2} + 7 a + 9 + \left(5 a^{2} + 6 a + 5\right)\cdot 13 + \left(10 a^{2} + 7 a + 1\right)\cdot 13^{2} + \left(9 a^{2} + 9 a + 1\right)\cdot 13^{3} + \left(7 a^{2} + 9 a + 7\right)\cdot 13^{4} + \left(8 a^{2} + a + 7\right)\cdot 13^{5} + \left(5 a^{2} + 10 a + 9\right)\cdot 13^{6} + \left(a^{2} + 12 a + 9\right)\cdot 13^{7} + \left(2 a^{2} + 4 a + 4\right)\cdot 13^{8} + \left(12 a^{2} + 4 a + 4\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 7 a^{2} + 5 + \left(11 a^{2} + 11 a\right)\cdot 13 + \left(a^{2} + 8 a + 3\right)\cdot 13^{2} + \left(6 a^{2} + 8 a + 9\right)\cdot 13^{3} + \left(4 a^{2} + 5 a + 2\right)\cdot 13^{4} + \left(5 a^{2} + 6 a + 3\right)\cdot 13^{5} + \left(7 a^{2} + 8 a + 3\right)\cdot 13^{6} + \left(6 a + 4\right)\cdot 13^{7} + \left(a^{2} + 3 a + 3\right)\cdot 13^{8} + \left(2 a^{2} + 7 a + 8\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 9 a^{2} + 6 a + 12 + \left(8 a^{2} + 8 a\right)\cdot 13 + \left(9 a + 10\right)\cdot 13^{2} + \left(10 a^{2} + 7 a + 5\right)\cdot 13^{3} + \left(10 a + 6\right)\cdot 13^{4} + \left(12 a^{2} + 4 a + 3\right)\cdot 13^{5} + \left(12 a^{2} + 7 a + 6\right)\cdot 13^{6} + \left(10 a^{2} + 6 a + 9\right)\cdot 13^{7} + \left(9 a^{2} + 4 a + 10\right)\cdot 13^{8} + \left(11 a^{2} + a + 3\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 4 a + 6 + \left(9 a^{2} + 4 a + 9\right)\cdot 13 + \left(6 a^{2} + 3 a + 10\right)\cdot 13^{2} + \left(11 a^{2} + 8\right)\cdot 13^{3} + \left(12 a^{2} + 9 a\right)\cdot 13^{4} + \left(8 a^{2} + 11 a + 5\right)\cdot 13^{5} + \left(3 a^{2} + 11 a + 10\right)\cdot 13^{6} + \left(9 a^{2} + 4 a + 4\right)\cdot 13^{7} + \left(8 a^{2} + 12 a + 5\right)\cdot 13^{8} + \left(11 a^{2} + 8\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 11 + 7\cdot 13 + 4\cdot 13^{2} + 2\cdot 13^{4} + 9\cdot 13^{5} + 2\cdot 13^{6} + 11\cdot 13^{7} + 11\cdot 13^{8} +O\left(13^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 6 a^{2} + 7 a + 1 + \left(12 a^{2} + 4 a + 1\right)\cdot 13 + \left(7 a^{2} + 8\right)\cdot 13^{2} + \left(3 a^{2} + 9 a + 2\right)\cdot 13^{3} + \left(2 a^{2} + 9 a + 8\right)\cdot 13^{4} + \left(12 a^{2} + 10 a\right)\cdot 13^{5} + \left(8 a^{2} + 10 a\right)\cdot 13^{6} + \left(12 a^{2} + 5\right)\cdot 13^{7} + \left(6 a^{2} + 6 a + 7\right)\cdot 13^{8} + \left(8 a^{2} + 8\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 7 a^{2} + 2 a + 11 + \left(4 a^{2} + 4 a + 7\right)\cdot 13 + \left(11 a^{2} + 9 a + 12\right)\cdot 13^{2} + \left(10 a^{2} + 3 a + 7\right)\cdot 13^{3} + \left(10 a^{2} + 7 a + 6\right)\cdot 13^{4} + \left(4 a^{2} + 3 a + 12\right)\cdot 13^{5} + \left(3 a + 5\right)\cdot 13^{6} + \left(4 a^{2} + 7 a + 6\right)\cdot 13^{7} + \left(10 a^{2} + 7 a + 7\right)\cdot 13^{8} + \left(5 a^{2} + 11 a\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,7)(4,5)(6,8)$
$(1,6)(2,5)(3,8)(4,7)$
$(2,3,4)(5,8,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,6)(2,5)(3,8)(4,7)$$-3$
$3$$2$$(1,3)(2,7)(4,5)(6,8)$$1$
$3$$2$$(1,8)(2,4)(3,6)(5,7)$$-1$
$4$$3$$(1,8,7)(3,4,6)$$0$
$4$$3$$(1,7,8)(3,6,4)$$0$
$4$$6$$(1,4,8,6,7,3)(2,5)$$0$
$4$$6$$(1,3,7,6,8,4)(2,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.