Properties

Label 3.3_61e2.6t6.1
Dimension 3
Group $A_4\times C_2$
Conductor $ 3 \cdot 61^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4\times C_2$
Conductor:$11163= 3 \cdot 61^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 6 x^{4} + 20 x^{3} + 33 x^{2} - 15 x + 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 14 a + 5 + \left(30 a + 28\right)\cdot 37 + \left(a + 22\right)\cdot 37^{2} + \left(24 a + 30\right)\cdot 37^{3} + \left(34 a + 14\right)\cdot 37^{4} + \left(32 a + 30\right)\cdot 37^{5} + \left(30 a + 35\right)\cdot 37^{6} + \left(28 a + 15\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 9 a + 6 + 28 a\cdot 37 + \left(21 a + 21\right)\cdot 37^{2} + \left(13 a + 7\right)\cdot 37^{3} + \left(3 a + 11\right)\cdot 37^{4} + \left(5 a + 32\right)\cdot 37^{5} + \left(35 a + 8\right)\cdot 37^{6} + \left(15 a + 32\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 4 + 9\cdot 37 + 29\cdot 37^{2} + 3\cdot 37^{3} + 13\cdot 37^{4} + 28\cdot 37^{5} + 8\cdot 37^{6} +O\left(37^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 23 a + 24 + \left(6 a + 24\right)\cdot 37 + \left(35 a + 36\right)\cdot 37^{2} + \left(12 a + 13\right)\cdot 37^{3} + \left(2 a + 18\right)\cdot 37^{4} + \left(4 a + 16\right)\cdot 37^{5} + \left(6 a + 15\right)\cdot 37^{6} + \left(8 a + 26\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 31 + 18\cdot 37 + 32\cdot 37^{2} + 14\cdot 37^{3} + 5\cdot 37^{4} + 28\cdot 37^{5} + 8\cdot 37^{6} + 12\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 28 a + 5 + \left(8 a + 30\right)\cdot 37 + \left(15 a + 5\right)\cdot 37^{2} + \left(23 a + 3\right)\cdot 37^{3} + \left(33 a + 11\right)\cdot 37^{4} + \left(31 a + 12\right)\cdot 37^{5} + \left(a + 33\right)\cdot 37^{6} + \left(21 a + 23\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)$
$(2,6)$
$(1,3,2)(4,5,6)$
$(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,4)(2,6)(3,5)$ $-3$
$3$ $2$ $(3,5)$ $1$
$3$ $2$ $(1,4)(3,5)$ $-1$
$4$ $3$ $(1,3,2)(4,5,6)$ $0$
$4$ $3$ $(1,2,3)(4,6,5)$ $0$
$4$ $6$ $(1,3,6,4,5,2)$ $0$
$4$ $6$ $(1,2,5,4,6,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.