Properties

Label 3.3_31e3.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 3 \cdot 31^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$89373= 3 \cdot 31^{3} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 8 x^{4} - 8 x^{3} + 35 x^{2} - 31 x + 47 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.3_31.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 22 a + 20 + \left(a + 24\right)\cdot 37 + \left(15 a + 30\right)\cdot 37^{2} + \left(6 a + 10\right)\cdot 37^{3} + \left(11 a + 10\right)\cdot 37^{4} + \left(34 a + 9\right)\cdot 37^{5} + \left(30 a + 32\right)\cdot 37^{6} + \left(35 a + 13\right)\cdot 37^{7} + 29\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 34 a + 18 + \left(7 a + 35\right)\cdot 37 + \left(13 a + 26\right)\cdot 37^{2} + \left(27 a + 34\right)\cdot 37^{3} + \left(34 a + 5\right)\cdot 37^{4} + \left(25 a + 9\right)\cdot 37^{5} + \left(20 a + 31\right)\cdot 37^{6} + \left(26 a + 24\right)\cdot 37^{7} + \left(5 a + 27\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 3 a + 6 + \left(29 a + 33\right)\cdot 37 + \left(23 a + 34\right)\cdot 37^{2} + \left(9 a + 19\right)\cdot 37^{3} + \left(2 a + 6\right)\cdot 37^{4} + \left(11 a + 4\right)\cdot 37^{5} + \left(16 a + 14\right)\cdot 37^{6} + \left(10 a + 36\right)\cdot 37^{7} + \left(31 a + 23\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 15 a + 34 + \left(35 a + 8\right)\cdot 37 + \left(21 a + 15\right)\cdot 37^{2} + \left(30 a + 21\right)\cdot 37^{3} + \left(25 a + 11\right)\cdot 37^{4} + \left(2 a + 24\right)\cdot 37^{5} + \left(6 a + 10\right)\cdot 37^{6} + \left(a + 15\right)\cdot 37^{7} + \left(36 a + 34\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 20 + 33\cdot 37 + 29\cdot 37^{2} + 37^{3} + 31\cdot 37^{4} + 22\cdot 37^{5} + 23\cdot 37^{6} + 34\cdot 37^{7} + 14\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 14 + 12\cdot 37 + 10\cdot 37^{2} + 22\cdot 37^{3} + 8\cdot 37^{4} + 4\cdot 37^{5} + 36\cdot 37^{6} + 22\cdot 37^{7} + 17\cdot 37^{8} +O\left(37^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(3,6)$
$(5,6)$
$(1,2,5)(3,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,3)(2,4)(5,6)$$-3$
$3$$2$$(1,3)(5,6)$$-1$
$3$$2$$(5,6)$$1$
$6$$2$$(1,5)(3,6)$$1$
$6$$2$$(1,3)(2,5)(4,6)$$-1$
$8$$3$$(1,2,5)(3,4,6)$$0$
$6$$4$$(1,6,3,5)$$1$
$6$$4$$(1,3)(2,5,4,6)$$-1$
$8$$6$$(1,2,5,3,4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.