Properties

Label 3.3_29e2.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 3 \cdot 29^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$2523= 3 \cdot 29^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + x^{3} - 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 20 a + 50 + \left(50 a + 29\right)\cdot 53 + \left(32 a + 25\right)\cdot 53^{2} + \left(3 a + 15\right)\cdot 53^{3} + \left(43 a + 43\right)\cdot 53^{4} + \left(8 a + 32\right)\cdot 53^{5} + \left(21 a + 1\right)\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 16 + 40\cdot 53 + 17\cdot 53^{2} + 52\cdot 53^{3} + 40\cdot 53^{4} + 10\cdot 53^{5} + 25\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 43 + 53 + 16\cdot 53^{2} + 20\cdot 53^{3} + 47\cdot 53^{4} + 24\cdot 53^{5} + 14\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 44 a + 32 + \left(13 a + 11\right)\cdot 53 + \left(43 a + 49\right)\cdot 53^{2} + \left(30 a + 49\right)\cdot 53^{3} + \left(52 a + 29\right)\cdot 53^{4} + \left(a + 28\right)\cdot 53^{5} + \left(16 a + 15\right)\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 9 a + 49 + \left(39 a + 22\right)\cdot 53 + \left(9 a + 49\right)\cdot 53^{2} + \left(22 a + 23\right)\cdot 53^{3} + 50\cdot 53^{4} + \left(51 a + 36\right)\cdot 53^{5} + \left(36 a + 24\right)\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 33 a + 24 + \left(2 a + 52\right)\cdot 53 + 20 a\cdot 53^{2} + \left(49 a + 50\right)\cdot 53^{3} + \left(9 a + 52\right)\cdot 53^{4} + \left(44 a + 24\right)\cdot 53^{5} + \left(31 a + 24\right)\cdot 53^{6} +O\left(53^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)$
$(1,2,5)(3,6,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,3)(5,6)$$-3$
$3$$2$$(1,4)$$1$
$3$$2$$(1,4)(2,3)$$-1$
$6$$2$$(2,5)(3,6)$$1$
$6$$2$$(1,4)(2,5)(3,6)$$-1$
$8$$3$$(1,2,5)(3,6,4)$$0$
$6$$4$$(1,3,4,2)$$1$
$6$$4$$(1,4)(2,6,3,5)$$-1$
$8$$6$$(1,3,6,4,2,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.