Properties

Label 3.3_23_31e2.6t11.2
Dimension 3
Group $S_4\times C_2$
Conductor $ 3 \cdot 23 \cdot 31^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$66309= 3 \cdot 23 \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 10 x^{4} - 17 x^{3} + 36 x^{2} - 36 x + 47 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 41 a + 28 + \left(21 a + 26\right)\cdot 43 + \left(10 a + 36\right)\cdot 43^{2} + \left(34 a + 13\right)\cdot 43^{3} + \left(15 a + 37\right)\cdot 43^{4} + \left(4 a + 6\right)\cdot 43^{5} + \left(14 a + 28\right)\cdot 43^{6} + \left(7 a + 2\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 4 + 5\cdot 43 + 30\cdot 43^{2} + 20\cdot 43^{3} + 43^{4} + 26\cdot 43^{5} + 40\cdot 43^{6} + 41\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 14 + 34\cdot 43 + 22\cdot 43^{2} + 23\cdot 43^{3} + 14\cdot 43^{4} + 34\cdot 43^{6} + 9\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 24 a + 39 + 17\cdot 43 + \left(4 a + 5\right)\cdot 43^{2} + \left(34 a + 23\right)\cdot 43^{3} + \left(19 a + 35\right)\cdot 43^{4} + \left(9 a + 33\right)\cdot 43^{5} + \left(30 a + 26\right)\cdot 43^{6} + \left(28 a + 18\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 2 a + 26 + \left(21 a + 7\right)\cdot 43 + \left(32 a + 25\right)\cdot 43^{2} + \left(8 a + 37\right)\cdot 43^{3} + \left(27 a + 18\right)\cdot 43^{4} + \left(38 a + 38\right)\cdot 43^{5} + \left(28 a + 37\right)\cdot 43^{6} + \left(35 a + 38\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 19 a + 20 + \left(42 a + 37\right)\cdot 43 + \left(38 a + 8\right)\cdot 43^{2} + \left(8 a + 10\right)\cdot 43^{3} + \left(23 a + 21\right)\cdot 43^{4} + \left(33 a + 23\right)\cdot 43^{5} + \left(12 a + 4\right)\cdot 43^{6} + \left(14 a + 17\right)\cdot 43^{7} +O\left(43^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,6)$
$(2,3)$
$(1,4,2)(3,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,6)(2,3)(4,5)$ $-3$
$3$ $2$ $(2,3)$ $1$
$3$ $2$ $(1,6)(2,3)$ $-1$
$6$ $2$ $(1,4)(5,6)$ $1$
$6$ $2$ $(1,4)(2,3)(5,6)$ $-1$
$8$ $3$ $(1,4,2)(3,6,5)$ $0$
$6$ $4$ $(1,2,6,3)$ $1$
$6$ $4$ $(1,5,6,4)(2,3)$ $-1$
$8$ $6$ $(1,4,2,6,5,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.