Properties

Label 3.3_239e2.6t11.2
Dimension 3
Group $S_4\times C_2$
Conductor $ 3 \cdot 239^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$171363= 3 \cdot 239^{2} $
Artin number field: Splitting field of $f= x^{6} + 2 x^{4} - 3 x^{3} + 2 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 41 + 39\cdot 43 + 43^{2} + 16\cdot 43^{3} + 40\cdot 43^{4} + 5\cdot 43^{5} + 17\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 8 a + 18 + \left(18 a + 21\right)\cdot 43 + \left(35 a + 41\right)\cdot 43^{2} + \left(24 a + 8\right)\cdot 43^{3} + \left(37 a + 32\right)\cdot 43^{4} + \left(36 a + 42\right)\cdot 43^{5} + \left(31 a + 10\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 35 a + 26 + \left(24 a + 31\right)\cdot 43 + \left(7 a + 15\right)\cdot 43^{2} + \left(18 a + 41\right)\cdot 43^{3} + \left(5 a + 1\right)\cdot 43^{4} + \left(6 a + 42\right)\cdot 43^{5} + \left(11 a + 5\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 12 a + 27 + \left(17 a + 9\right)\cdot 43 + \left(15 a + 23\right)\cdot 43^{2} + \left(26 a + 19\right)\cdot 43^{3} + \left(41 a + 18\right)\cdot 43^{4} + \left(9 a + 35\right)\cdot 43^{5} + \left(28 a + 16\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 31 a + 39 + \left(25 a + 14\right)\cdot 43 + \left(27 a + 21\right)\cdot 43^{2} + \left(16 a + 30\right)\cdot 43^{3} + \left(a + 33\right)\cdot 43^{4} + \left(33 a + 3\right)\cdot 43^{5} + \left(14 a + 35\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 21 + 11\cdot 43 + 25\cdot 43^{2} + 12\cdot 43^{3} + 2\cdot 43^{4} + 42\cdot 43^{5} + 42\cdot 43^{6} +O\left(43^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(4,6)$
$(1,6)$
$(1,3,2)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,6)(2,5)(3,4)$ $-3$
$3$ $2$ $(1,6)$ $1$
$3$ $2$ $(1,6)(3,4)$ $-1$
$6$ $2$ $(2,3)(4,5)$ $-1$
$6$ $2$ $(1,6)(2,3)(4,5)$ $1$
$8$ $3$ $(1,3,2)(4,5,6)$ $0$
$6$ $4$ $(1,4,6,3)$ $-1$
$6$ $4$ $(1,6)(2,4,5,3)$ $1$
$8$ $6$ $(1,4,5,6,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.