Properties

Label 3.3_239e2.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 3 \cdot 239^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$171363= 3 \cdot 239^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 5 x^{4} + 4 x^{3} - 5 x^{2} + 30 x - 21 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 + 40\cdot 53 + 36\cdot 53^{2} + 23\cdot 53^{3} + 44\cdot 53^{4} + 52\cdot 53^{5} + 20\cdot 53^{6} + 38\cdot 53^{7} + 51\cdot 53^{8} +O\left(53^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 46 a + 7 + \left(5 a + 7\right)\cdot 53 + \left(11 a + 52\right)\cdot 53^{2} + \left(25 a + 44\right)\cdot 53^{3} + \left(19 a + 19\right)\cdot 53^{4} + \left(27 a + 34\right)\cdot 53^{5} + \left(9 a + 17\right)\cdot 53^{6} + \left(47 a + 29\right)\cdot 53^{7} + \left(37 a + 37\right)\cdot 53^{8} +O\left(53^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 7 + 12\cdot 53 + 31\cdot 53^{2} + 32\cdot 53^{3} + 10\cdot 53^{4} + 32\cdot 53^{5} + 38\cdot 53^{6} + 40\cdot 53^{7} + 52\cdot 53^{8} +O\left(53^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 21 a + 13 + \left(21 a + 25\right)\cdot 53 + 5 a\cdot 53^{2} + \left(21 a + 28\right)\cdot 53^{3} + \left(8 a + 52\right)\cdot 53^{4} + \left(16 a + 8\right)\cdot 53^{5} + \left(3 a + 28\right)\cdot 53^{6} + \left(2 a + 24\right)\cdot 53^{7} + \left(2 a + 40\right)\cdot 53^{8} +O\left(53^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 32 a + 44 + \left(31 a + 36\right)\cdot 53 + 47 a\cdot 53^{2} + \left(31 a + 1\right)\cdot 53^{3} + \left(44 a + 12\right)\cdot 53^{4} + \left(36 a + 12\right)\cdot 53^{5} + \left(49 a + 25\right)\cdot 53^{6} + \left(50 a + 29\right)\cdot 53^{7} + \left(50 a + 46\right)\cdot 53^{8} +O\left(53^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 7 a + 32 + \left(47 a + 37\right)\cdot 53 + \left(41 a + 37\right)\cdot 53^{2} + \left(27 a + 28\right)\cdot 53^{3} + \left(33 a + 19\right)\cdot 53^{4} + \left(25 a + 18\right)\cdot 53^{5} + \left(43 a + 28\right)\cdot 53^{6} + \left(5 a + 49\right)\cdot 53^{7} + \left(15 a + 35\right)\cdot 53^{8} +O\left(53^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(3,6)$
$(5,6)$
$(1,2,5)(3,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,3)(2,4)(5,6)$ $-3$
$3$ $2$ $(1,3)(5,6)$ $-1$
$3$ $2$ $(1,3)$ $1$
$6$ $2$ $(1,5)(3,6)$ $1$
$6$ $2$ $(1,3)(2,5)(4,6)$ $-1$
$8$ $3$ $(1,2,5)(3,4,6)$ $0$
$6$ $4$ $(1,6,3,5)$ $1$
$6$ $4$ $(1,6,3,5)(2,4)$ $-1$
$8$ $6$ $(1,6,4,3,5,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.