Properties

Label 3.3_17_31e2.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 3 \cdot 17 \cdot 31^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$49011= 3 \cdot 17 \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - x^{4} + 6 x^{3} - 3 x^{2} + 27 x - 27 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 50 a + 27 + \left(38 a + 38\right)\cdot 61 + \left(60 a + 22\right)\cdot 61^{2} + \left(7 a + 10\right)\cdot 61^{3} + \left(47 a + 7\right)\cdot 61^{4} + \left(26 a + 36\right)\cdot 61^{5} + \left(39 a + 15\right)\cdot 61^{6} + \left(54 a + 26\right)\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 11 + 16\cdot 61 + 37\cdot 61^{2} + 12\cdot 61^{3} + 14\cdot 61^{4} + 17\cdot 61^{5} + 55\cdot 61^{6} + 25\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 56 a + 38 + \left(5 a + 57\right)\cdot 61 + \left(15 a + 15\right)\cdot 61^{2} + \left(9 a + 55\right)\cdot 61^{3} + \left(57 a + 42\right)\cdot 61^{4} + \left(35 a + 51\right)\cdot 61^{5} + \left(47 a + 46\right)\cdot 61^{6} + \left(4 a + 36\right)\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 60 + 35\cdot 61 + 37\cdot 61^{2} + 36\cdot 61^{3} + 42\cdot 61^{4} + 31\cdot 61^{5} + 39\cdot 61^{6} + 58\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 5 a + 33 + \left(55 a + 7\right)\cdot 61 + \left(45 a + 25\right)\cdot 61^{2} + \left(51 a + 49\right)\cdot 61^{3} + \left(3 a + 29\right)\cdot 61^{4} + \left(25 a + 30\right)\cdot 61^{5} + \left(13 a + 58\right)\cdot 61^{6} + \left(56 a + 54\right)\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 11 a + 16 + \left(22 a + 27\right)\cdot 61 + 44\cdot 61^{2} + \left(53 a + 18\right)\cdot 61^{3} + \left(13 a + 46\right)\cdot 61^{4} + \left(34 a + 15\right)\cdot 61^{5} + \left(21 a + 28\right)\cdot 61^{6} + \left(6 a + 41\right)\cdot 61^{7} +O\left(61^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,5)$
$(1,5)$
$(1,2,3)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,5)(2,4)(3,6)$ $-3$
$3$ $2$ $(3,6)$ $1$
$3$ $2$ $(1,5)(3,6)$ $-1$
$6$ $2$ $(1,2)(4,5)$ $1$
$6$ $2$ $(1,2)(3,6)(4,5)$ $-1$
$8$ $3$ $(1,2,3)(4,6,5)$ $0$
$6$ $4$ $(1,3,5,6)$ $1$
$6$ $4$ $(1,5)(2,3,4,6)$ $-1$
$8$ $6$ $(1,2,3,5,4,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.