Properties

Label 3.393477257.6t11.a.a
Dimension $3$
Group $S_4\times C_2$
Conductor $393477257$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $S_4\times C_2$
Conductor: \(393477257\)\(\medspace = 17^{3} \cdot 283^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.2.393477257.2
Galois orbit size: $1$
Smallest permutation container: $S_4\times C_2$
Parity: even
Determinant: 1.17.2t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.2.283.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 2x^{5} - x^{4} + 17x^{3} + 71x^{2} + 138x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 10.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: \( x^{2} + 49x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 5 a + 22 + \left(48 a + 34\right)\cdot 53 + \left(38 a + 39\right)\cdot 53^{2} + \left(49 a + 1\right)\cdot 53^{3} + \left(2 a + 42\right)\cdot 53^{4} + \left(3 a + 50\right)\cdot 53^{5} + 14 a\cdot 53^{6} + \left(8 a + 1\right)\cdot 53^{7} + \left(33 a + 17\right)\cdot 53^{8} + \left(38 a + 37\right)\cdot 53^{9} +O(53^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 30 + 21\cdot 53 + 25\cdot 53^{2} + 4\cdot 53^{3} + 53^{4} + 32\cdot 53^{5} + 27\cdot 53^{6} + 25\cdot 53^{7} + 5\cdot 53^{8} + 44\cdot 53^{9} +O(53^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 4 a + 27 + \left(17 a + 26\right)\cdot 53 + \left(17 a + 50\right)\cdot 53^{2} + \left(37 a + 41\right)\cdot 53^{3} + \left(a + 52\right)\cdot 53^{4} + \left(42 a + 40\right)\cdot 53^{5} + \left(36 a + 6\right)\cdot 53^{6} + \left(15 a + 21\right)\cdot 53^{7} + \left(12 a + 7\right)\cdot 53^{8} + \left(51 a + 6\right)\cdot 53^{9} +O(53^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 49 a + 43 + \left(35 a + 37\right)\cdot 53 + \left(35 a + 49\right)\cdot 53^{2} + \left(15 a + 14\right)\cdot 53^{3} + \left(51 a + 22\right)\cdot 53^{4} + \left(10 a + 48\right)\cdot 53^{5} + \left(16 a + 5\right)\cdot 53^{6} + \left(37 a + 47\right)\cdot 53^{7} + \left(40 a + 40\right)\cdot 53^{8} + \left(a + 39\right)\cdot 53^{9} +O(53^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 48 a + 42 + \left(4 a + 9\right)\cdot 53 + \left(14 a + 41\right)\cdot 53^{2} + \left(3 a + 2\right)\cdot 53^{3} + \left(50 a + 4\right)\cdot 53^{4} + \left(49 a + 7\right)\cdot 53^{5} + \left(38 a + 1\right)\cdot 53^{6} + \left(44 a + 20\right)\cdot 53^{7} + \left(19 a + 35\right)\cdot 53^{8} + \left(14 a + 52\right)\cdot 53^{9} +O(53^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 50 + 28\cdot 53 + 5\cdot 53^{2} + 40\cdot 53^{3} + 36\cdot 53^{4} + 32\cdot 53^{5} + 10\cdot 53^{6} + 44\cdot 53^{7} + 52\cdot 53^{8} + 31\cdot 53^{9} +O(53^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3)(4,6,5)$
$(1,3)(4,5)$
$(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,6)(3,5)$$-3$
$3$$2$$(3,5)$$1$
$3$$2$$(1,4)(3,5)$$-1$
$6$$2$$(1,2)(4,6)$$-1$
$6$$2$$(1,2)(3,5)(4,6)$$1$
$8$$3$$(1,2,3)(4,6,5)$$0$
$6$$4$$(1,3,4,5)$$-1$
$6$$4$$(1,6,4,2)(3,5)$$1$
$8$$6$$(1,2,3,4,6,5)$$0$

The blue line marks the conjugacy class containing complex conjugation.