Properties

Label 3.37e2_61e2.12t33.1c2
Dimension 3
Group $A_5$
Conductor $ 37^{2} \cdot 61^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_5$
Conductor:$5094049= 37^{2} \cdot 61^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + 11 x^{2} + 18 x + 9 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 439 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 54 + 92\cdot 439 + 391\cdot 439^{2} + 336\cdot 439^{3} + 239\cdot 439^{4} +O\left(439^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 85 + 106\cdot 439 + 335\cdot 439^{2} + 33\cdot 439^{3} + 144\cdot 439^{4} +O\left(439^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 343 + 27\cdot 439 + 371\cdot 439^{2} + 11\cdot 439^{3} + 241\cdot 439^{4} +O\left(439^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 418 + 28\cdot 439 + 104\cdot 439^{2} + 8\cdot 439^{3} + 10\cdot 439^{4} +O\left(439^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 419 + 183\cdot 439 + 115\cdot 439^{2} + 48\cdot 439^{3} + 243\cdot 439^{4} +O\left(439^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$3$
$15$$2$$(1,2)(3,4)$$-1$
$20$$3$$(1,2,3)$$0$
$12$$5$$(1,2,3,4,5)$$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
$12$$5$$(1,3,4,5,2)$$-\zeta_{5}^{3} - \zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.