Properties

Label 3.331e3.4t5.2c1
Dimension 3
Group $S_4$
Conductor $ 331^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$36264691= 331^{3} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 41 x^{2} + 62 x - 128 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.331.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 83 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 8 + 43\cdot 83 + 67\cdot 83^{2} + 64\cdot 83^{3} + 8\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 45 + 4\cdot 83 + 30\cdot 83^{2} + 18\cdot 83^{3} + 45\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 49 + 60\cdot 83 + 9\cdot 83^{2} + 32\cdot 83^{3} + 40\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 65 + 57\cdot 83 + 58\cdot 83^{2} + 50\cdot 83^{3} + 71\cdot 83^{4} +O\left(83^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.