Basic invariants
Dimension: | $3$ |
Group: | $S_4$ |
Conductor: | \(331\) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 4.2.331.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $S_4$ |
Parity: | odd |
Determinant: | 1.331.2t1.a.a |
Projective image: | $S_4$ |
Projective stem field: | Galois closure of 4.2.331.1 |
Defining polynomial
$f(x)$ | $=$ | \( x^{4} - x^{3} + x^{2} + x - 1 \) . |
The roots of $f$ are computed in $\Q_{ 113 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 40 + 35\cdot 113 + 41\cdot 113^{2} + 79\cdot 113^{3} + 67\cdot 113^{4} +O(113^{5})\) |
$r_{ 2 }$ | $=$ | \( 94 + 58\cdot 113 + 20\cdot 113^{2} + 65\cdot 113^{3} + 55\cdot 113^{4} +O(113^{5})\) |
$r_{ 3 }$ | $=$ | \( 96 + 64\cdot 113 + 113^{2} + 99\cdot 113^{3} + 91\cdot 113^{4} +O(113^{5})\) |
$r_{ 4 }$ | $=$ | \( 110 + 66\cdot 113 + 49\cdot 113^{2} + 95\cdot 113^{3} + 10\cdot 113^{4} +O(113^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $3$ | |
$3$ | $2$ | $(1,2)(3,4)$ | $-1$ | |
$6$ | $2$ | $(1,2)$ | $1$ | ✓ |
$8$ | $3$ | $(1,2,3)$ | $0$ | |
$6$ | $4$ | $(1,2,3,4)$ | $-1$ |