Properties

Label 3.3299e2.18t24.4c2
Dimension 3
Group $(C_3^2:C_3):C_2$
Conductor $ 3299^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$(C_3^2:C_3):C_2$
Conductor:$10883401= 3299^{2} $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} + 5 x^{6} + 2 x^{5} - 9 x^{4} - 8 x^{3} + 35 x^{2} - 35 x + 11 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 18T24
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 17.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
$r_{ 1 }$ $=$ $ 6\cdot 11 + 10\cdot 11^{2} + 6\cdot 11^{3} + 10\cdot 11^{4} + 10\cdot 11^{5} + 4\cdot 11^{6} + 9\cdot 11^{7} + 8\cdot 11^{8} + 5\cdot 11^{9} + 2\cdot 11^{10} + 9\cdot 11^{11} + 10\cdot 11^{12} + 7\cdot 11^{13} + 6\cdot 11^{14} + 11^{15} + 11^{16} +O\left(11^{ 17 }\right)$
$r_{ 2 }$ $=$ $ 7 a^{2} + 2 a + 6 + \left(5 a^{2} + 3 a + 7\right)\cdot 11 + 8 a\cdot 11^{2} + \left(4 a^{2} + 5 a + 9\right)\cdot 11^{3} + \left(6 a^{2} + 10 a + 4\right)\cdot 11^{4} + \left(4 a^{2} + 9 a + 2\right)\cdot 11^{5} + \left(3 a^{2} + 10 a + 8\right)\cdot 11^{6} + \left(9 a^{2} + 7 a + 8\right)\cdot 11^{7} + \left(6 a + 4\right)\cdot 11^{8} + \left(9 a^{2} + 8 a + 8\right)\cdot 11^{9} + \left(10 a^{2} + 3 a + 10\right)\cdot 11^{10} + \left(7 a^{2} + 6 a + 6\right)\cdot 11^{11} + \left(3 a^{2} + 10 a + 8\right)\cdot 11^{12} + \left(a^{2} + 7 a + 1\right)\cdot 11^{13} + \left(4 a^{2} + 10 a + 9\right)\cdot 11^{14} + \left(6 a^{2} + 9 a + 4\right)\cdot 11^{15} + \left(8 a^{2} + 8 a\right)\cdot 11^{16} +O\left(11^{ 17 }\right)$
$r_{ 3 }$ $=$ $ 9 a^{2} + 10 a + 5 + \left(4 a + 8\right)\cdot 11 + \left(7 a^{2} + 3 a + 5\right)\cdot 11^{2} + \left(2 a^{2} + 3 a + 3\right)\cdot 11^{3} + \left(4 a^{2} + 10 a + 9\right)\cdot 11^{4} + \left(3 a^{2} + 4 a\right)\cdot 11^{5} + \left(a^{2} + 5 a + 9\right)\cdot 11^{6} + \left(9 a^{2} + 2 a + 4\right)\cdot 11^{7} + \left(6 a^{2} + 7 a + 5\right)\cdot 11^{8} + \left(7 a^{2} + 10 a + 6\right)\cdot 11^{9} + \left(9 a^{2} + 7 a + 5\right)\cdot 11^{10} + \left(10 a^{2} + 6 a + 3\right)\cdot 11^{11} + \left(4 a^{2} + 7 a + 10\right)\cdot 11^{12} + \left(7 a^{2} + 9 a + 9\right)\cdot 11^{13} + \left(8 a^{2} + 5 a + 7\right)\cdot 11^{15} + \left(6 a^{2} + 4 a + 1\right)\cdot 11^{16} +O\left(11^{ 17 }\right)$
$r_{ 4 }$ $=$ $ 5 a^{2} + 6 a + 7 + \left(3 a^{2} + 10 a + 4\right)\cdot 11 + \left(3 a^{2} + 10 a + 4\right)\cdot 11^{2} + \left(9 a^{2} + 6 a + 1\right)\cdot 11^{3} + \left(8 a^{2} + 2 a + 8\right)\cdot 11^{4} + \left(3 a^{2} + 7 a + 8\right)\cdot 11^{5} + \left(10 a^{2} + 3 a + 2\right)\cdot 11^{6} + \left(4 a^{2} + a + 10\right)\cdot 11^{7} + \left(5 a^{2} + 4 a + 10\right)\cdot 11^{8} + \left(a^{2} + 3 a + 1\right)\cdot 11^{9} + \left(8 a^{2} + 2 a + 7\right)\cdot 11^{10} + \left(7 a + 4\right)\cdot 11^{11} + \left(8 a^{2} + 5 a + 3\right)\cdot 11^{12} + \left(7 a + 8\right)\cdot 11^{13} + \left(a^{2} + 2 a + 8\right)\cdot 11^{14} + \left(5 a^{2} + 6\right)\cdot 11^{15} + \left(6 a^{2} + a + 8\right)\cdot 11^{16} +O\left(11^{ 17 }\right)$
$r_{ 5 }$ $=$ $ 4 + 6\cdot 11 + 7\cdot 11^{2} + 11^{3} + 8\cdot 11^{4} + 7\cdot 11^{5} + 6\cdot 11^{6} + 6\cdot 11^{7} + 6\cdot 11^{8} + 6\cdot 11^{11} + 10\cdot 11^{12} + 5\cdot 11^{13} + 11^{14} + 7\cdot 11^{15} + 4\cdot 11^{16} +O\left(11^{ 17 }\right)$
$r_{ 6 }$ $=$ $ 8 + 9\cdot 11 + 3\cdot 11^{2} + 2\cdot 11^{3} + 3\cdot 11^{4} + 3\cdot 11^{5} + 10\cdot 11^{6} + 5\cdot 11^{7} + 6\cdot 11^{8} + 4\cdot 11^{9} + 8\cdot 11^{10} + 6\cdot 11^{11} + 8\cdot 11^{13} + 2\cdot 11^{14} + 2\cdot 11^{15} + 5\cdot 11^{16} +O\left(11^{ 17 }\right)$
$r_{ 7 }$ $=$ $ 10 a^{2} + 7 a + 10 + \left(7 a^{2} + 5 a + 6\right)\cdot 11 + \left(3 a^{2} + 8\right)\cdot 11^{2} + \left(5 a^{2} + 6 a + 10\right)\cdot 11^{3} + \left(7 a^{2} + 4 a + 9\right)\cdot 11^{4} + \left(3 a^{2} + 3 a + 4\right)\cdot 11^{5} + \left(2 a^{2} + 4 a + 10\right)\cdot 11^{6} + \left(3 a^{2} + 4 a + 7\right)\cdot 11^{7} + \left(7 a^{2} + 3 a + 9\right)\cdot 11^{8} + 9 a\cdot 11^{9} + \left(a^{2} + 3 a + 5\right)\cdot 11^{10} + \left(8 a^{2} + 9 a + 3\right)\cdot 11^{11} + \left(a^{2} + 10 a + 2\right)\cdot 11^{12} + \left(10 a^{2} + 9 a + 6\right)\cdot 11^{13} + \left(4 a^{2} + 9 a + 6\right)\cdot 11^{14} + \left(4 a^{2} + a + 9\right)\cdot 11^{15} + \left(7 a^{2} + a + 9\right)\cdot 11^{16} +O\left(11^{ 17 }\right)$
$r_{ 8 }$ $=$ $ 10 a^{2} + 3 a + 10 + \left(a^{2} + 8 a + 9\right)\cdot 11 + \left(7 a^{2} + 2 a + 5\right)\cdot 11^{2} + \left(8 a^{2} + 9 a\right)\cdot 11^{3} + \left(6 a^{2} + 8 a + 9\right)\cdot 11^{4} + \left(2 a^{2} + 4 a + 10\right)\cdot 11^{5} + \left(8 a^{2} + 7 a + 10\right)\cdot 11^{6} + \left(7 a^{2} + a + 2\right)\cdot 11^{7} + \left(4 a^{2} + 6\right)\cdot 11^{8} + 10 a\cdot 11^{9} + \left(3 a^{2} + 4 a + 4\right)\cdot 11^{10} + \left(2 a^{2} + 8 a + 10\right)\cdot 11^{11} + \left(10 a^{2} + 5 a + 9\right)\cdot 11^{12} + \left(8 a^{2} + 6 a\right)\cdot 11^{13} + \left(5 a^{2} + 8 a + 4\right)\cdot 11^{14} + \left(10 a^{2} + 10\right)\cdot 11^{15} + \left(6 a^{2} + a + 1\right)\cdot 11^{16} +O\left(11^{ 17 }\right)$
$r_{ 9 }$ $=$ $ 3 a^{2} + 5 a + 8 + \left(2 a^{2} + 6\right)\cdot 11 + \left(7 a + 7\right)\cdot 11^{2} + \left(3 a^{2} + a + 7\right)\cdot 11^{3} + \left(10 a^{2} + 7 a + 2\right)\cdot 11^{4} + \left(3 a^{2} + 2 a + 5\right)\cdot 11^{5} + \left(7 a^{2} + a + 2\right)\cdot 11^{6} + \left(9 a^{2} + 4 a + 9\right)\cdot 11^{7} + \left(7 a^{2} + 6\right)\cdot 11^{8} + \left(2 a^{2} + 2 a + 3\right)\cdot 11^{9} + 10 a\cdot 11^{10} + \left(3 a^{2} + 5 a + 4\right)\cdot 11^{11} + \left(4 a^{2} + 3 a + 9\right)\cdot 11^{12} + \left(4 a^{2} + 2 a + 5\right)\cdot 11^{13} + \left(5 a^{2} + 3\right)\cdot 11^{14} + \left(9 a^{2} + 4 a + 5\right)\cdot 11^{15} + \left(7 a^{2} + 5 a + 10\right)\cdot 11^{16} +O\left(11^{ 17 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(2,9)(3,8)(4,7)$
$(2,8,4)(3,9,7)$
$(1,2,7)(3,6,4)(5,8,9)$
$(1,5,6)(2,8,4)(3,7,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$9$$2$$(1,3)(5,7)(6,9)$$-1$
$1$$3$$(1,5,6)(2,8,4)(3,7,9)$$-3 \zeta_{3} - 3$
$1$$3$$(1,6,5)(2,4,8)(3,9,7)$$3 \zeta_{3}$
$6$$3$$(1,2,7)(3,6,4)(5,8,9)$$0$
$6$$3$$(1,8,7)(2,3,6)(4,9,5)$$0$
$6$$3$$(1,4,7)(2,9,5)(3,6,8)$$0$
$6$$3$$(2,8,4)(3,9,7)$$0$
$9$$6$$(1,9,5,3,6,7)(2,4,8)$$-\zeta_{3}$
$9$$6$$(1,7,6,3,5,9)(2,8,4)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.