Properties

Label 3.3299.9t12.3c2
Dimension 3
Group $(C_3^2:C_3):C_2$
Conductor $ 3299 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$(C_3^2:C_3):C_2$
Conductor:$3299 $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} + x^{6} + 8 x^{5} + x^{4} - x^{3} - 12 x^{2} - 8 x + 5 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $(C_3^2:C_3):C_2$
Parity: Odd
Determinant: 1.3299.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 18.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{3} + 2 x + 11 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 6\cdot 13 + 8\cdot 13^{2} + 9\cdot 13^{3} + 13^{4} + 3\cdot 13^{5} + 3\cdot 13^{6} + 11\cdot 13^{7} + 2\cdot 13^{8} + 7\cdot 13^{9} + 3\cdot 13^{10} + 10\cdot 13^{11} + 8\cdot 13^{12} + 5\cdot 13^{13} + 10\cdot 13^{14} + 8\cdot 13^{15} + 9\cdot 13^{16} + 13^{17} +O\left(13^{ 18 }\right)$
$r_{ 2 }$ $=$ $ 12 a^{2} + 10 a + 12 + \left(9 a + 9\right)\cdot 13 + \left(9 a + 8\right)\cdot 13^{2} + \left(9 a^{2} + 7\right)\cdot 13^{3} + \left(12 a + 9\right)\cdot 13^{4} + \left(10 a^{2} + 4\right)\cdot 13^{5} + \left(5 a^{2} + a + 3\right)\cdot 13^{6} + \left(5 a^{2} + 4 a + 7\right)\cdot 13^{7} + \left(6 a^{2} + 10 a + 8\right)\cdot 13^{8} + \left(12 a^{2} + 8 a + 3\right)\cdot 13^{9} + \left(11 a^{2} + 3 a + 7\right)\cdot 13^{10} + \left(12 a^{2} + 7 a + 8\right)\cdot 13^{11} + \left(10 a^{2} + 8 a + 1\right)\cdot 13^{12} + \left(5 a^{2} + 2 a + 12\right)\cdot 13^{13} + \left(8 a^{2} + 6 a + 6\right)\cdot 13^{14} + \left(11 a^{2} + 9 a + 2\right)\cdot 13^{15} + \left(5 a^{2} + 11 a + 12\right)\cdot 13^{16} + \left(10 a^{2} + 11 a\right)\cdot 13^{17} +O\left(13^{ 18 }\right)$
$r_{ 3 }$ $=$ $ 3 + 4\cdot 13 + 2\cdot 13^{2} + 5\cdot 13^{4} + 9\cdot 13^{5} + 11\cdot 13^{6} + 10\cdot 13^{7} + 4\cdot 13^{8} + 2\cdot 13^{9} + 3\cdot 13^{10} + 3\cdot 13^{11} + 12\cdot 13^{12} + 11\cdot 13^{13} + 5\cdot 13^{14} + 7\cdot 13^{16} + 4\cdot 13^{17} +O\left(13^{ 18 }\right)$
$r_{ 4 }$ $=$ $ 6 a^{2} + 12 a + 4 + \left(4 a^{2} + a + 10\right)\cdot 13 + \left(12 a^{2} + a + 7\right)\cdot 13^{2} + \left(10 a^{2} + 5 a + 1\right)\cdot 13^{3} + \left(7 a^{2} + a + 6\right)\cdot 13^{4} + \left(10 a^{2} + 2 a + 5\right)\cdot 13^{5} + \left(8 a^{2} + 2 a + 7\right)\cdot 13^{6} + \left(11 a^{2} + 12 a + 2\right)\cdot 13^{7} + \left(5 a^{2} + 12\right)\cdot 13^{8} + \left(12 a^{2} + 9 a + 7\right)\cdot 13^{9} + \left(12 a^{2} + 2 a + 8\right)\cdot 13^{10} + \left(11 a^{2} + 4 a + 11\right)\cdot 13^{11} + \left(10 a^{2} + 8 a + 5\right)\cdot 13^{12} + \left(10 a^{2} + 2 a + 1\right)\cdot 13^{13} + \left(3 a^{2} + a + 5\right)\cdot 13^{14} + \left(8 a^{2} + 3 a + 2\right)\cdot 13^{15} + \left(8 a^{2} + 11 a + 7\right)\cdot 13^{16} + \left(11 a^{2} + 10 a + 2\right)\cdot 13^{17} +O\left(13^{ 18 }\right)$
$r_{ 5 }$ $=$ $ 9 + 2\cdot 13 + 2\cdot 13^{2} + 3\cdot 13^{3} + 6\cdot 13^{4} + 11\cdot 13^{6} + 3\cdot 13^{7} + 5\cdot 13^{8} + 3\cdot 13^{9} + 6\cdot 13^{10} + 12\cdot 13^{11} + 4\cdot 13^{12} + 8\cdot 13^{13} + 9\cdot 13^{14} + 3\cdot 13^{15} + 9\cdot 13^{16} + 6\cdot 13^{17} +O\left(13^{ 18 }\right)$
$r_{ 6 }$ $=$ $ 12 a^{2} + 12 + \left(a^{2} + 2 a + 6\right)\cdot 13 + \left(4 a^{2} + 4 a + 5\right)\cdot 13^{2} + \left(2 a^{2} + 6 a + 7\right)\cdot 13^{3} + \left(5 a^{2} + 2\right)\cdot 13^{4} + \left(2 a^{2} + 4 a + 3\right)\cdot 13^{5} + \left(9 a^{2} + 12 a + 12\right)\cdot 13^{6} + \left(11 a^{2} + 7 a + 6\right)\cdot 13^{7} + \left(5 a^{2} + 2 a + 3\right)\cdot 13^{8} + \left(10 a^{2} + 3 a + 5\right)\cdot 13^{9} + \left(10 a^{2} + 2 a + 1\right)\cdot 13^{10} + \left(6 a^{2} + 9\right)\cdot 13^{11} + \left(3 a^{2} + 9 a + 4\right)\cdot 13^{12} + \left(12 a^{2} + 12 a + 3\right)\cdot 13^{13} + \left(6 a^{2} + 9 a + 9\right)\cdot 13^{14} + \left(12 a^{2} + 12 a + 3\right)\cdot 13^{15} + \left(6 a^{2} + 3 a + 9\right)\cdot 13^{16} + \left(3 a^{2} + 9 a + 4\right)\cdot 13^{17} +O\left(13^{ 18 }\right)$
$r_{ 7 }$ $=$ $ 8 a^{2} + 10 a + 11 + \left(9 a^{2} + 12\right)\cdot 13 + 12 a\cdot 13^{2} + \left(7 a^{2} + 5\right)\cdot 13^{3} + \left(8 a^{2} + 11 a + 11\right)\cdot 13^{4} + \left(2 a^{2} + 11 a + 7\right)\cdot 13^{5} + \left(7 a^{2} + 12 a + 9\right)\cdot 13^{6} + \left(10 a^{2} + 11 a + 9\right)\cdot 13^{7} + \left(a^{2} + 12 a + 6\right)\cdot 13^{8} + \left(6 a^{2} + 12 a + 12\right)\cdot 13^{9} + \left(a^{2} + 9 a + 1\right)\cdot 13^{10} + \left(3 a^{2} + 2 a + 4\right)\cdot 13^{11} + \left(a^{2} + 3 a + 10\right)\cdot 13^{12} + \left(11 a^{2} + 12 a + 1\right)\cdot 13^{13} + \left(3 a^{2} + 5\right)\cdot 13^{14} + \left(7 a^{2} + 8 a + 5\right)\cdot 13^{15} + \left(8 a^{2} + 7 a + 11\right)\cdot 13^{16} + \left(7 a^{2} + a + 5\right)\cdot 13^{17} +O\left(13^{ 18 }\right)$
$r_{ 8 }$ $=$ $ 6 a^{2} + 6 a + 4 + \left(2 a^{2} + 2 a + 3\right)\cdot 13 + \left(12 a^{2} + 4 a + 3\right)\cdot 13^{2} + \left(9 a^{2} + 11 a\right)\cdot 13^{3} + \left(3 a^{2} + 2 a + 5\right)\cdot 13^{4} + 12 a\cdot 13^{6} + \left(10 a^{2} + 9 a + 9\right)\cdot 13^{7} + \left(4 a^{2} + 2 a + 10\right)\cdot 13^{8} + \left(7 a^{2} + 4 a + 9\right)\cdot 13^{9} + \left(12 a^{2} + 12 a + 3\right)\cdot 13^{10} + \left(9 a^{2} + 2 a\right)\cdot 13^{11} + \left(a + 1\right)\cdot 13^{12} + \left(9 a^{2} + 11 a + 12\right)\cdot 13^{13} + 5 a\cdot 13^{14} + \left(7 a^{2} + 8 a + 5\right)\cdot 13^{15} + \left(11 a^{2} + 6 a + 2\right)\cdot 13^{16} + \left(7 a^{2} + 12 a + 6\right)\cdot 13^{17} +O\left(13^{ 18 }\right)$
$r_{ 9 }$ $=$ $ 8 a^{2} + a + 11 + \left(6 a^{2} + 9 a + 8\right)\cdot 13 + \left(9 a^{2} + 7 a + 12\right)\cdot 13^{2} + \left(12 a^{2} + a + 3\right)\cdot 13^{3} + \left(12 a^{2} + 11 a + 4\right)\cdot 13^{4} + \left(12 a^{2} + 6 a + 4\right)\cdot 13^{5} + \left(7 a^{2} + 11 a + 6\right)\cdot 13^{6} + \left(2 a^{2} + 5 a + 3\right)\cdot 13^{7} + \left(a^{2} + 9 a + 10\right)\cdot 13^{8} + \left(3 a^{2} + 12\right)\cdot 13^{9} + \left(2 a^{2} + 8 a + 2\right)\cdot 13^{10} + \left(7 a^{2} + 8 a + 5\right)\cdot 13^{11} + \left(11 a^{2} + 8 a + 2\right)\cdot 13^{12} + \left(2 a^{2} + 10 a + 8\right)\cdot 13^{13} + \left(2 a^{2} + a + 11\right)\cdot 13^{14} + \left(5 a^{2} + 10 a + 6\right)\cdot 13^{15} + \left(10 a^{2} + 10 a + 9\right)\cdot 13^{16} + \left(10 a^{2} + 5 a + 5\right)\cdot 13^{17} +O\left(13^{ 18 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(2,7,8)(4,9,6)$
$(1,3,5)(2,7,8)(4,6,9)$
$(2,6)(4,8)(7,9)$
$(1,9,7)(2,5,6)(3,4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$9$$2$$(2,6)(4,8)(7,9)$$1$
$1$$3$$(1,3,5)(2,7,8)(4,6,9)$$-3 \zeta_{3} - 3$
$1$$3$$(1,5,3)(2,8,7)(4,9,6)$$3 \zeta_{3}$
$6$$3$$(1,9,7)(2,5,6)(3,4,8)$$0$
$6$$3$$(1,6,7)(2,5,4)(3,9,8)$$0$
$6$$3$$(2,7,8)(4,9,6)$$0$
$6$$3$$(1,7,4)(2,9,5)(3,8,6)$$0$
$9$$6$$(1,3,5)(2,9,8,6,7,4)$$-\zeta_{3} - 1$
$9$$6$$(1,5,3)(2,4,7,6,8,9)$$\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.