Properties

Label 3.31e2_67e2.6t8.2c1
Dimension 3
Group $S_4$
Conductor $ 31^{2} \cdot 67^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$4313929= 31^{2} \cdot 67^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 11 x^{2} + 14 x - 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 149 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 41 + 89\cdot 149 + 139\cdot 149^{2} + 90\cdot 149^{3} + 40\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 64 + 37\cdot 149 + 32\cdot 149^{2} + 3\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 88 + 148\cdot 149 + 134\cdot 149^{2} + 121\cdot 149^{3} + 117\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 106 + 22\cdot 149 + 140\cdot 149^{2} + 84\cdot 149^{3} + 136\cdot 149^{4} +O\left(149^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.