Properties

Label 3.31e2_67.6t11.3c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 31^{2} \cdot 67 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$64387= 31^{2} \cdot 67 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 8 x^{4} + 13 x^{3} + 24 x^{2} - 18 x - 27 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd
Determinant: 1.67.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 10 a + 37 + \left(37 a + 23\right)\cdot 43 + \left(36 a + 15\right)\cdot 43^{2} + \left(20 a + 29\right)\cdot 43^{3} + \left(34 a + 3\right)\cdot 43^{4} + \left(28 a + 18\right)\cdot 43^{5} + \left(26 a + 8\right)\cdot 43^{6} + \left(12 a + 24\right)\cdot 43^{7} + \left(18 a + 21\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 25 + 29\cdot 43 + 12\cdot 43^{3} + 21\cdot 43^{4} + 20\cdot 43^{5} + 19\cdot 43^{6} + 16\cdot 43^{7} + 19\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 36 + 9\cdot 43 + 9\cdot 43^{2} + 32\cdot 43^{3} + 37\cdot 43^{4} + 5\cdot 43^{5} + 12\cdot 43^{6} + 35\cdot 43^{7} + 31\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 16 a + 28 + \left(27 a + 1\right)\cdot 43 + \left(42 a + 15\right)\cdot 43^{2} + \left(21 a + 31\right)\cdot 43^{3} + \left(12 a + 7\right)\cdot 43^{4} + \left(19 a + 11\right)\cdot 43^{5} + \left(32 a + 13\right)\cdot 43^{6} + \left(8 a + 33\right)\cdot 43^{7} + \left(16 a + 10\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 33 a + 4 + \left(5 a + 8\right)\cdot 43 + \left(6 a + 15\right)\cdot 43^{2} + \left(22 a + 13\right)\cdot 43^{3} + \left(8 a + 17\right)\cdot 43^{4} + \left(14 a + 12\right)\cdot 43^{5} + \left(16 a + 6\right)\cdot 43^{6} + \left(30 a + 10\right)\cdot 43^{7} + \left(24 a + 27\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 27 a + 1 + \left(15 a + 13\right)\cdot 43 + 30\cdot 43^{2} + \left(21 a + 10\right)\cdot 43^{3} + \left(30 a + 41\right)\cdot 43^{4} + \left(23 a + 17\right)\cdot 43^{5} + \left(10 a + 26\right)\cdot 43^{6} + \left(34 a + 9\right)\cdot 43^{7} + \left(26 a + 18\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)(3,6)$
$(1,5,2)(3,4,6)$
$(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,3)(5,6)$$-3$
$3$$2$$(2,3)(5,6)$$-1$
$3$$2$$(2,3)$$1$
$6$$2$$(2,5)(3,6)$$1$
$6$$2$$(1,5)(2,3)(4,6)$$-1$
$8$$3$$(1,5,2)(3,4,6)$$0$
$6$$4$$(2,6,3,5)$$1$
$6$$4$$(1,4)(2,6,3,5)$$-1$
$8$$6$$(1,2,6,4,3,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.