Properties

Label 3.31e2_61e3.18t86.3c1
Dimension 3
Group $C_3 \wr S_3 $
Conductor $ 31^{2} \cdot 61^{3}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$C_3 \wr S_3 $
Conductor:$218128741= 31^{2} \cdot 61^{3} $
Artin number field: Splitting field of $f= x^{9} - x^{8} - 4 x^{7} + 2 x^{6} + 8 x^{5} - x^{4} - 8 x^{3} - 2 x^{2} + 3 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 18T86
Parity: Even
Determinant: 1.61.3t1.1c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 17.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{3} + 6 x + 65 $
Roots:
$r_{ 1 }$ $=$ $ 66 a^{2} + 49 a + 26 + \left(11 a^{2} + 46 a + 43\right)\cdot 67 + \left(40 a^{2} + 64 a + 39\right)\cdot 67^{2} + \left(31 a^{2} + 14 a + 48\right)\cdot 67^{3} + \left(13 a^{2} + 13 a + 59\right)\cdot 67^{4} + \left(57 a^{2} + 58 a + 48\right)\cdot 67^{5} + \left(44 a^{2} + 6 a + 55\right)\cdot 67^{6} + \left(54 a^{2} + 59 a + 18\right)\cdot 67^{7} + \left(58 a^{2} + 64 a + 41\right)\cdot 67^{8} + \left(a^{2} + 5 a + 24\right)\cdot 67^{9} + \left(27 a^{2} + a + 54\right)\cdot 67^{10} + \left(56 a^{2} + 13 a + 3\right)\cdot 67^{11} + \left(66 a^{2} + 47 a + 41\right)\cdot 67^{12} + \left(28 a^{2} + 58 a + 45\right)\cdot 67^{13} + \left(28 a^{2} + 15 a + 17\right)\cdot 67^{14} + \left(57 a^{2} + 47 a + 6\right)\cdot 67^{15} + \left(50 a^{2} + 38 a + 37\right)\cdot 67^{16} +O\left(67^{ 17 }\right)$
$r_{ 2 }$ $=$ $ 32 + 49\cdot 67 + 47\cdot 67^{2} + 58\cdot 67^{3} + 61\cdot 67^{4} + 49\cdot 67^{5} + 35\cdot 67^{6} + 3\cdot 67^{7} + 43\cdot 67^{8} + 47\cdot 67^{9} + 41\cdot 67^{10} + 60\cdot 67^{11} + 3\cdot 67^{12} + 27\cdot 67^{13} + 54\cdot 67^{14} + 52\cdot 67^{15} + 61\cdot 67^{16} +O\left(67^{ 17 }\right)$
$r_{ 3 }$ $=$ $ 19 + 17\cdot 67 + 20\cdot 67^{2} + 7\cdot 67^{3} + 31\cdot 67^{4} + 20\cdot 67^{5} + 19\cdot 67^{6} + 40\cdot 67^{7} + 11\cdot 67^{8} + 31\cdot 67^{9} + 28\cdot 67^{10} + 56\cdot 67^{11} + 66\cdot 67^{12} + 25\cdot 67^{13} + 65\cdot 67^{14} + 25\cdot 67^{15} + 45\cdot 67^{16} +O\left(67^{ 17 }\right)$
$r_{ 4 }$ $=$ $ 36 a^{2} + 16 a + 40 + \left(46 a^{2} + 37 a + 47\right)\cdot 67 + \left(61 a^{2} + 64 a + 58\right)\cdot 67^{2} + \left(7 a^{2} + 11 a + 20\right)\cdot 67^{3} + \left(7 a^{2} + 3 a + 34\right)\cdot 67^{4} + \left(16 a^{2} + 63 a + 18\right)\cdot 67^{5} + \left(2 a^{2} + 13 a + 19\right)\cdot 67^{6} + \left(2 a^{2} + 2 a + 9\right)\cdot 67^{7} + \left(21 a^{2} + 10 a + 24\right)\cdot 67^{8} + \left(5 a^{2} + 56 a + 38\right)\cdot 67^{9} + \left(62 a^{2} + 5 a + 60\right)\cdot 67^{10} + \left(18 a^{2} + 41 a + 54\right)\cdot 67^{11} + \left(35 a^{2} + 65 a + 48\right)\cdot 67^{12} + \left(49 a^{2} + 3 a + 60\right)\cdot 67^{13} + \left(23 a^{2} + 15 a + 65\right)\cdot 67^{14} + \left(64 a^{2} + 12 a + 33\right)\cdot 67^{15} + \left(45 a^{2} + 23 a + 17\right)\cdot 67^{16} +O\left(67^{ 17 }\right)$
$r_{ 5 }$ $=$ $ 28 a^{2} + 43 a + 53 + \left(23 a^{2} + 10 a + 19\right)\cdot 67 + \left(49 a^{2} + 28 a + 7\right)\cdot 67^{2} + \left(24 a^{2} + 59 a + 8\right)\cdot 67^{3} + \left(59 a^{2} + 62 a + 2\right)\cdot 67^{4} + \left(30 a^{2} + 10 a + 17\right)\cdot 67^{5} + \left(62 a^{2} + 48 a + 45\right)\cdot 67^{6} + \left(3 a^{2} + 58 a + 29\right)\cdot 67^{7} + \left(31 a^{2} + 4 a + 29\right)\cdot 67^{8} + \left(16 a^{2} + 37 a + 16\right)\cdot 67^{9} + \left(14 a^{2} + 7 a + 30\right)\cdot 67^{10} + \left(3 a^{2} + 18 a + 51\right)\cdot 67^{11} + \left(3 a^{2} + 34 a + 60\right)\cdot 67^{12} + \left(34 a^{2} + 65 a + 30\right)\cdot 67^{13} + \left(16 a^{2} + 64 a + 41\right)\cdot 67^{14} + \left(12 a^{2} + 41 a + 59\right)\cdot 67^{15} + \left(48 a^{2} + 35 a + 32\right)\cdot 67^{16} +O\left(67^{ 17 }\right)$
$r_{ 6 }$ $=$ $ 37 + 34\cdot 67 + 61\cdot 67^{2} + 37\cdot 67^{3} + 59\cdot 67^{4} + 51\cdot 67^{5} + 58\cdot 67^{6} + 44\cdot 67^{7} + 7\cdot 67^{8} + 18\cdot 67^{9} + 37\cdot 67^{10} + 30\cdot 67^{11} + 60\cdot 67^{12} + 4\cdot 67^{13} + 41\cdot 67^{14} + 23\cdot 67^{15} +O\left(67^{ 17 }\right)$
$r_{ 7 }$ $=$ $ 32 a^{2} + 2 a + 24 + \left(8 a^{2} + 50 a + 29\right)\cdot 67 + \left(32 a^{2} + 4 a + 7\right)\cdot 67^{2} + \left(27 a^{2} + 40 a + 32\right)\cdot 67^{3} + \left(46 a^{2} + 50 a + 57\right)\cdot 67^{4} + \left(60 a^{2} + 12 a + 62\right)\cdot 67^{5} + \left(19 a^{2} + 46 a + 22\right)\cdot 67^{6} + \left(10 a^{2} + 5 a + 42\right)\cdot 67^{7} + \left(54 a^{2} + 59 a + 22\right)\cdot 67^{8} + \left(59 a^{2} + 4 a + 55\right)\cdot 67^{9} + \left(44 a^{2} + 60 a + 58\right)\cdot 67^{10} + \left(58 a^{2} + 12 a + 12\right)\cdot 67^{11} + \left(31 a^{2} + 21 a + 35\right)\cdot 67^{12} + \left(55 a^{2} + 4 a + 17\right)\cdot 67^{13} + \left(14 a^{2} + 36 a + 30\right)\cdot 67^{14} + \left(12 a^{2} + 7 a + 26\right)\cdot 67^{15} + \left(37 a^{2} + 5 a + 49\right)\cdot 67^{16} +O\left(67^{ 17 }\right)$
$r_{ 8 }$ $=$ $ 41 a^{2} + 40 a + 38 + \left(12 a^{2} + 40 a + 43\right)\cdot 67 + \left(44 a^{2} + 59 a + 53\right)\cdot 67^{2} + \left(13 a^{2} + 10 a + 30\right)\cdot 67^{3} + \left(18 a^{2} + 56 a + 38\right)\cdot 67^{4} + \left(a^{2} + 12 a + 32\right)\cdot 67^{5} + \left(54 a^{2} + 16 a + 11\right)\cdot 67^{6} + \left(30 a^{2} + 26 a + 3\right)\cdot 67^{7} + \left(64 a^{2} + 39 a + 29\right)\cdot 67^{8} + \left(a^{2} + 10 a + 25\right)\cdot 67^{9} + \left(a^{2} + 42 a + 44\right)\cdot 67^{10} + \left(43 a^{2} + 46 a + 9\right)\cdot 67^{11} + \left(38 a^{2} + 9 a + 2\right)\cdot 67^{12} + \left(54 a^{2} + 65 a + 46\right)\cdot 67^{13} + \left(56 a^{2} + 42 a + 1\right)\cdot 67^{14} + \left(37 a^{2} + 53 a + 28\right)\cdot 67^{15} + \left(38 a^{2} + 40 a + 61\right)\cdot 67^{16} +O\left(67^{ 17 }\right)$
$r_{ 9 }$ $=$ $ 65 a^{2} + 51 a + \left(30 a^{2} + 15 a + 50\right)\cdot 67 + \left(40 a^{2} + 46 a + 38\right)\cdot 67^{2} + \left(28 a^{2} + 63 a + 23\right)\cdot 67^{3} + \left(56 a^{2} + 14 a + 57\right)\cdot 67^{4} + \left(34 a^{2} + 43 a + 32\right)\cdot 67^{5} + \left(17 a^{2} + 2 a + 66\right)\cdot 67^{6} + \left(32 a^{2} + 49 a + 8\right)\cdot 67^{7} + \left(38 a^{2} + 22 a + 59\right)\cdot 67^{8} + \left(48 a^{2} + 19 a + 10\right)\cdot 67^{9} + \left(51 a^{2} + 17 a + 46\right)\cdot 67^{10} + \left(20 a^{2} + 2 a + 54\right)\cdot 67^{11} + \left(25 a^{2} + 23 a + 15\right)\cdot 67^{12} + \left(45 a^{2} + 3 a + 9\right)\cdot 67^{13} + \left(60 a^{2} + 26 a + 17\right)\cdot 67^{14} + \left(16 a^{2} + 38 a + 11\right)\cdot 67^{15} + \left(47 a^{2} + 57 a + 29\right)\cdot 67^{16} +O\left(67^{ 17 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,8,7,9,4,5)$
$(1,2,7,3,4,6)(5,8,9)$
$(5,9,8)$
$(2,6,3)$
$(1,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$9$$2$$(1,3)(2,4)(6,7)$$-1$
$1$$3$$(1,4,7)(2,6,3)(5,9,8)$$3 \zeta_{3}$
$1$$3$$(1,7,4)(2,3,6)(5,8,9)$$-3 \zeta_{3} - 3$
$3$$3$$(1,7,4)(2,3,6)(5,9,8)$$2 \zeta_{3} + 1$
$3$$3$$(1,4,7)(2,6,3)(5,8,9)$$-2 \zeta_{3} - 1$
$3$$3$$(2,6,3)$$\zeta_{3} - 1$
$3$$3$$(2,3,6)$$-\zeta_{3} - 2$
$3$$3$$(1,7,4)(5,8,9)$$\zeta_{3} + 2$
$3$$3$$(1,4,7)(5,9,8)$$-\zeta_{3} + 1$
$6$$3$$(1,7,4)(2,6,3)$$0$
$18$$3$$(1,2,9)(3,5,7)(4,6,8)$$0$
$9$$6$$(1,2,7,3,4,6)(5,8,9)$$-1$
$9$$6$$(1,6,4,3,7,2)(5,9,8)$$-1$
$9$$6$$(1,2,4,6,7,3)(5,8,9)$$\zeta_{3} + 1$
$9$$6$$(1,3,7,6,4,2)(5,9,8)$$-\zeta_{3}$
$9$$6$$(1,8,7,9,4,5)$$\zeta_{3} + 1$
$9$$6$$(1,5,4,9,7,8)$$-\zeta_{3}$
$9$$6$$(1,2)(3,7)(4,6)(5,9,8)$$\zeta_{3} + 1$
$9$$6$$(1,2)(3,7)(4,6)(5,8,9)$$-\zeta_{3}$
$18$$9$$(1,2,8,7,3,9,4,6,5)$$0$
$18$$9$$(1,8,3,4,5,2,7,9,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.