Properties

Label 3.31e2_53e2.6t8.1
Dimension 3
Group $S_4$
Conductor $ 31^{2} \cdot 53^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$2699449= 31^{2} \cdot 53^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 20 x - 24 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 25 + 32\cdot 37 + 17\cdot 37^{2} + 21\cdot 37^{3} + 32\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 10 + 32\cdot 37 + 18\cdot 37^{2} + 15\cdot 37^{3} + 7\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 a + \left(26 a + 31\right)\cdot 37 + \left(23 a + 2\right)\cdot 37^{2} + \left(7 a + 15\right)\cdot 37^{3} + \left(21 a + 15\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 27 a + 3 + \left(10 a + 15\right)\cdot 37 + \left(13 a + 34\right)\cdot 37^{2} + \left(29 a + 21\right)\cdot 37^{3} + \left(15 a + 18\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.