Properties

Label 3.31_73.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 31 \cdot 73 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$2263= 31 \cdot 73 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 5 x^{4} - 5 x^{3} + 3 x^{2} - x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 25 a + 33 + \left(49 a + 47\right)\cdot 61 + \left(50 a + 8\right)\cdot 61^{2} + \left(31 a + 17\right)\cdot 61^{3} + \left(31 a + 47\right)\cdot 61^{4} + \left(13 a + 33\right)\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 36 a + 58 + \left(11 a + 10\right)\cdot 61 + \left(10 a + 10\right)\cdot 61^{2} + \left(29 a + 59\right)\cdot 61^{3} + \left(29 a + 46\right)\cdot 61^{4} + \left(47 a + 15\right)\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 47 + 26\cdot 61 + 57\cdot 61^{2} + 21\cdot 61^{3} + 15\cdot 61^{4} + 58\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 25 a + 4 + \left(49 a + 50\right)\cdot 61 + \left(50 a + 50\right)\cdot 61^{2} + \left(31 a + 1\right)\cdot 61^{3} + \left(31 a + 14\right)\cdot 61^{4} + \left(13 a + 45\right)\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 15 + 34\cdot 61 + 3\cdot 61^{2} + 39\cdot 61^{3} + 45\cdot 61^{4} + 2\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 36 a + 29 + \left(11 a + 13\right)\cdot 61 + \left(10 a + 52\right)\cdot 61^{2} + \left(29 a + 43\right)\cdot 61^{3} + \left(29 a + 13\right)\cdot 61^{4} + \left(47 a + 27\right)\cdot 61^{5} +O\left(61^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,6)$
$(1,6)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,6)(2,4)(3,5)$ $-3$
$3$ $2$ $(1,6)$ $1$
$3$ $2$ $(1,6)(2,4)$ $-1$
$6$ $2$ $(2,3)(4,5)$ $1$
$6$ $2$ $(1,6)(2,3)(4,5)$ $-1$
$8$ $3$ $(1,2,3)(4,5,6)$ $0$
$6$ $4$ $(1,4,6,2)$ $1$
$6$ $4$ $(1,6)(2,5,4,3)$ $-1$
$8$ $6$ $(1,4,5,6,2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.