Properties

Label 3.31_53.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 31 \cdot 53 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$1643= 31 \cdot 53 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 3 x^{4} + 6 x^{3} - x^{2} - 26 x + 33 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd
Determinant: 1.31_53.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 43 a + 42 + \left(4 a + 41\right)\cdot 47 + \left(24 a + 39\right)\cdot 47^{2} + \left(35 a + 30\right)\cdot 47^{3} + \left(7 a + 36\right)\cdot 47^{4} + \left(40 a + 41\right)\cdot 47^{5} + \left(20 a + 24\right)\cdot 47^{6} + \left(4 a + 41\right)\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 43 + 8\cdot 47 + 10\cdot 47^{2} + 10\cdot 47^{3} + 11\cdot 47^{4} + 2\cdot 47^{5} + 30\cdot 47^{6} + 31\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 13 a + 36 + \left(8 a + 11\right)\cdot 47 + \left(6 a + 42\right)\cdot 47^{2} + \left(26 a + 28\right)\cdot 47^{3} + \left(22 a + 4\right)\cdot 47^{4} + \left(28 a + 9\right)\cdot 47^{5} + \left(29 a + 37\right)\cdot 47^{6} + \left(36 a + 31\right)\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 34 + \left(42 a + 8\right)\cdot 47 + \left(22 a + 36\right)\cdot 47^{2} + \left(11 a + 30\right)\cdot 47^{3} + \left(39 a + 16\right)\cdot 47^{4} + \left(6 a + 20\right)\cdot 47^{5} + \left(26 a + 26\right)\cdot 47^{6} + \left(42 a + 29\right)\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 34 a + 15 + \left(38 a + 15\right)\cdot 47 + \left(40 a + 46\right)\cdot 47^{2} + \left(20 a + 27\right)\cdot 47^{3} + \left(24 a + 23\right)\cdot 47^{4} + \left(18 a + 43\right)\cdot 47^{5} + \left(17 a + 20\right)\cdot 47^{6} + \left(10 a + 28\right)\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 19 + 7\cdot 47 + 13\cdot 47^{2} + 12\cdot 47^{3} + 47^{4} + 24\cdot 47^{5} + 47^{6} + 25\cdot 47^{7} +O\left(47^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,6)$
$(1,4)$
$(1,2,3)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,6)(3,5)$$-3$
$3$$2$$(1,4)$$1$
$3$$2$$(1,4)(2,6)$$-1$
$6$$2$$(2,3)(5,6)$$-1$
$6$$2$$(1,4)(2,3)(5,6)$$1$
$8$$3$$(1,2,3)(4,6,5)$$0$
$6$$4$$(1,6,4,2)$$-1$
$6$$4$$(1,4)(2,5,6,3)$$1$
$8$$6$$(1,6,5,4,2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.