Properties

Label 3.2e9_751e2.6t11.2
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{9} \cdot 751^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$288768512= 2^{9} \cdot 751^{2} $
Artin number field: Splitting field of $f= x^{6} + 6 x^{4} + 760 x^{2} + 6008 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 16.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 16 + 28\cdot 29 + 8\cdot 29^{2} + 17\cdot 29^{3} + 14\cdot 29^{4} + 12\cdot 29^{5} + 27\cdot 29^{6} + 25\cdot 29^{7} + 2\cdot 29^{8} + 20\cdot 29^{9} + 27\cdot 29^{10} + 25\cdot 29^{11} + 19\cdot 29^{13} + 23\cdot 29^{14} + 2\cdot 29^{15} +O\left(29^{ 16 }\right)$
$r_{ 2 }$ $=$ $ 14 a + 9 + 25 a\cdot 29 + \left(19 a + 24\right)\cdot 29^{2} + \left(24 a + 21\right)\cdot 29^{3} + \left(4 a + 28\right)\cdot 29^{4} + \left(18 a + 8\right)\cdot 29^{5} + 12\cdot 29^{6} + \left(26 a + 8\right)\cdot 29^{7} + \left(18 a + 25\right)\cdot 29^{8} + \left(24 a + 27\right)\cdot 29^{9} + \left(16 a + 13\right)\cdot 29^{10} + \left(9 a + 25\right)\cdot 29^{11} + \left(3 a + 15\right)\cdot 29^{12} + \left(10 a + 25\right)\cdot 29^{13} + \left(a + 12\right)\cdot 29^{14} + \left(13 a + 19\right)\cdot 29^{15} +O\left(29^{ 16 }\right)$
$r_{ 3 }$ $=$ $ 14 a + 8 + \left(25 a + 2\right)\cdot 29 + \left(19 a + 18\right)\cdot 29^{2} + \left(24 a + 19\right)\cdot 29^{3} + 4 a\cdot 29^{4} + \left(18 a + 21\right)\cdot 29^{5} + 2\cdot 29^{6} + \left(26 a + 7\right)\cdot 29^{7} + \left(18 a + 22\right)\cdot 29^{8} + \left(24 a + 12\right)\cdot 29^{9} + \left(16 a + 13\right)\cdot 29^{10} + \left(9 a + 1\right)\cdot 29^{11} + \left(3 a + 6\right)\cdot 29^{12} + \left(10 a + 14\right)\cdot 29^{13} + \left(a + 19\right)\cdot 29^{14} + \left(13 a + 3\right)\cdot 29^{15} +O\left(29^{ 16 }\right)$
$r_{ 4 }$ $=$ $ 13 + 20\cdot 29^{2} + 11\cdot 29^{3} + 14\cdot 29^{4} + 16\cdot 29^{5} + 29^{6} + 3\cdot 29^{7} + 26\cdot 29^{8} + 8\cdot 29^{9} + 29^{10} + 3\cdot 29^{11} + 28\cdot 29^{12} + 9\cdot 29^{13} + 5\cdot 29^{14} + 26\cdot 29^{15} +O\left(29^{ 16 }\right)$
$r_{ 5 }$ $=$ $ 15 a + 20 + \left(3 a + 28\right)\cdot 29 + \left(9 a + 4\right)\cdot 29^{2} + \left(4 a + 7\right)\cdot 29^{3} + 24 a\cdot 29^{4} + \left(10 a + 20\right)\cdot 29^{5} + \left(28 a + 16\right)\cdot 29^{6} + \left(2 a + 20\right)\cdot 29^{7} + \left(10 a + 3\right)\cdot 29^{8} + \left(4 a + 1\right)\cdot 29^{9} + \left(12 a + 15\right)\cdot 29^{10} + \left(19 a + 3\right)\cdot 29^{11} + \left(25 a + 13\right)\cdot 29^{12} + \left(18 a + 3\right)\cdot 29^{13} + \left(27 a + 16\right)\cdot 29^{14} + \left(15 a + 9\right)\cdot 29^{15} +O\left(29^{ 16 }\right)$
$r_{ 6 }$ $=$ $ 15 a + 21 + \left(3 a + 26\right)\cdot 29 + \left(9 a + 10\right)\cdot 29^{2} + \left(4 a + 9\right)\cdot 29^{3} + \left(24 a + 28\right)\cdot 29^{4} + \left(10 a + 7\right)\cdot 29^{5} + \left(28 a + 26\right)\cdot 29^{6} + \left(2 a + 21\right)\cdot 29^{7} + \left(10 a + 6\right)\cdot 29^{8} + \left(4 a + 16\right)\cdot 29^{9} + \left(12 a + 15\right)\cdot 29^{10} + \left(19 a + 27\right)\cdot 29^{11} + \left(25 a + 22\right)\cdot 29^{12} + \left(18 a + 14\right)\cdot 29^{13} + \left(27 a + 9\right)\cdot 29^{14} + \left(15 a + 25\right)\cdot 29^{15} +O\left(29^{ 16 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(5,6)$
$(1,3,2)(4,6,5)$
$(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-3$
$3$ $2$ $(1,4)$ $1$
$3$ $2$ $(1,4)(3,6)$ $-1$
$6$ $2$ $(2,3)(5,6)$ $1$
$6$ $2$ $(1,4)(2,3)(5,6)$ $-1$
$8$ $3$ $(1,3,2)(4,6,5)$ $0$
$6$ $4$ $(1,6,4,3)$ $1$
$6$ $4$ $(1,6,4,3)(2,5)$ $-1$
$8$ $6$ $(1,6,5,4,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.