Properties

Label 3.2e9_751.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{9} \cdot 751 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$384512= 2^{9} \cdot 751 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{4} + 24 x^{2} - 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd
Determinant: 1.2e3_751.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 3 + 20\cdot 31 + 29\cdot 31^{2} + 21\cdot 31^{3} + 11\cdot 31^{4} + 19\cdot 31^{5} + 15\cdot 31^{6} + 6\cdot 31^{7} + 3\cdot 31^{8} + 21\cdot 31^{10} +O\left(31^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 9 a + \left(12 a + 29\right)\cdot 31 + \left(29 a + 6\right)\cdot 31^{2} + \left(14 a + 25\right)\cdot 31^{3} + \left(9 a + 21\right)\cdot 31^{4} + \left(30 a + 4\right)\cdot 31^{5} + \left(3 a + 9\right)\cdot 31^{6} + \left(29 a + 7\right)\cdot 31^{7} + \left(3 a + 3\right)\cdot 31^{8} + \left(23 a + 26\right)\cdot 31^{9} + \left(7 a + 28\right)\cdot 31^{10} +O\left(31^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 22 a + 18 + \left(18 a + 13\right)\cdot 31 + \left(a + 22\right)\cdot 31^{2} + \left(16 a + 25\right)\cdot 31^{3} + \left(21 a + 25\right)\cdot 31^{4} + 24\cdot 31^{5} + \left(27 a + 17\right)\cdot 31^{6} + \left(a + 30\right)\cdot 31^{7} + \left(27 a + 12\right)\cdot 31^{8} + \left(7 a + 6\right)\cdot 31^{9} + \left(23 a + 21\right)\cdot 31^{10} +O\left(31^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 28 + 10\cdot 31 + 31^{2} + 9\cdot 31^{3} + 19\cdot 31^{4} + 11\cdot 31^{5} + 15\cdot 31^{6} + 24\cdot 31^{7} + 27\cdot 31^{8} + 30\cdot 31^{9} + 9\cdot 31^{10} +O\left(31^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 22 a + \left(18 a + 2\right)\cdot 31 + \left(a + 24\right)\cdot 31^{2} + \left(16 a + 5\right)\cdot 31^{3} + \left(21 a + 9\right)\cdot 31^{4} + 26\cdot 31^{5} + \left(27 a + 21\right)\cdot 31^{6} + \left(a + 23\right)\cdot 31^{7} + \left(27 a + 27\right)\cdot 31^{8} + \left(7 a + 4\right)\cdot 31^{9} + \left(23 a + 2\right)\cdot 31^{10} +O\left(31^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 9 a + 13 + \left(12 a + 17\right)\cdot 31 + \left(29 a + 8\right)\cdot 31^{2} + \left(14 a + 5\right)\cdot 31^{3} + \left(9 a + 5\right)\cdot 31^{4} + \left(30 a + 6\right)\cdot 31^{5} + \left(3 a + 13\right)\cdot 31^{6} + 29 a\cdot 31^{7} + \left(3 a + 18\right)\cdot 31^{8} + \left(23 a + 24\right)\cdot 31^{9} + \left(7 a + 9\right)\cdot 31^{10} +O\left(31^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(4,6)$
$(3,6)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,5)(3,6)$$-3$
$3$$2$$(1,4)(3,6)$$-1$
$3$$2$$(1,4)$$1$
$6$$2$$(1,3)(4,6)$$1$
$6$$2$$(1,4)(2,3)(5,6)$$-1$
$8$$3$$(1,2,3)(4,5,6)$$0$
$6$$4$$(1,6,4,3)$$1$
$6$$4$$(1,6,4,3)(2,5)$$-1$
$8$$6$$(1,6,5,4,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.