Properties

Label 3.2e9_5e2.4t5.3c1
Dimension 3
Group $S_4$
Conductor $ 2^{9} \cdot 5^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$12800= 2^{9} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{6} + 4 x^{4} + 7 x^{2} + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.2e3.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 9 a + 17 + \left(5 a + 23\right)\cdot 43 + \left(9 a + 19\right)\cdot 43^{2} + \left(10 a + 42\right)\cdot 43^{3} + \left(2 a + 3\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 + 23\cdot 43 + 40\cdot 43^{2} + 35\cdot 43^{3} + 16\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 27 a + 8 + \left(25 a + 22\right)\cdot 43 + \left(30 a + 40\right)\cdot 43^{2} + \left(10 a + 9\right)\cdot 43^{3} + \left(8 a + 1\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 34 a + 26 + \left(37 a + 19\right)\cdot 43 + \left(33 a + 23\right)\cdot 43^{2} + 32 a\cdot 43^{3} + \left(40 a + 39\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 40 + 19\cdot 43 + 2\cdot 43^{2} + 7\cdot 43^{3} + 26\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 16 a + 35 + \left(17 a + 20\right)\cdot 43 + \left(12 a + 2\right)\cdot 43^{2} + \left(32 a + 33\right)\cdot 43^{3} + \left(34 a + 41\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6)(3,4,5)$
$(2,5)(3,6)$
$(1,6,4,3)$
$(1,3,5)(2,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,4)(3,6)$$-1$
$6$$2$$(1,6)(2,5)(3,4)$$1$
$8$$3$$(1,3,5)(2,4,6)$$0$
$6$$4$$(1,6,4,3)$$-1$
The blue line marks the conjugacy class containing complex conjugation.