Properties

Label 3.2e9_5_17.4t5.1
Dimension 3
Group $S_4$
Conductor $ 2^{9} \cdot 5 \cdot 17 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$43520= 2^{9} \cdot 5 \cdot 17 $
Artin number field: Splitting field of $f= x^{4} - 10 x^{2} - 8 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 179 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 26 + 95\cdot 179 + 138\cdot 179^{2} + 152\cdot 179^{3} + 119\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 + 98\cdot 179 + 127\cdot 179^{2} + 163\cdot 179^{3} + 108\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 29 + 53\cdot 179 + 22\cdot 179^{2} + 63\cdot 179^{3} + 78\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 97 + 111\cdot 179 + 69\cdot 179^{2} + 157\cdot 179^{3} + 50\cdot 179^{4} +O\left(179^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.