Properties

Label 3.2e9_3e3.4t5.3c1
Dimension 3
Group $S_4$
Conductor $ 2^{9} \cdot 3^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$13824= 2^{9} \cdot 3^{3} $
Artin number field: Splitting field of $f= x^{6} + 6 x^{4} - 12 x^{2} + 24 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.2e3_3.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 3 + 12\cdot 29 + 26\cdot 29^{2} + 15\cdot 29^{3} + 18\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 28 a + 17 + \left(12 a + 10\right)\cdot 29 + \left(19 a + 1\right)\cdot 29^{2} + \left(21 a + 28\right)\cdot 29^{3} + \left(25 a + 18\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 27 a + 5 + \left(11 a + 27\right)\cdot 29 + \left(6 a + 18\right)\cdot 29^{2} + \left(9 a + 23\right)\cdot 29^{3} + \left(a + 15\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 26 + 16\cdot 29 + 2\cdot 29^{2} + 13\cdot 29^{3} + 10\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ a + 12 + \left(16 a + 18\right)\cdot 29 + \left(9 a + 27\right)\cdot 29^{2} + 7 a\cdot 29^{3} + \left(3 a + 10\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 2 a + 24 + \left(17 a + 1\right)\cdot 29 + \left(22 a + 10\right)\cdot 29^{2} + \left(19 a + 5\right)\cdot 29^{3} + \left(27 a + 13\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(3,6)$
$(2,5)(3,6)$
$(2,3,5,6)$
$(1,5,3)(2,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,4)(3,6)$$-1$
$6$$2$$(1,4)(2,6)(3,5)$$1$
$8$$3$$(1,5,3)(2,6,4)$$0$
$6$$4$$(2,3,5,6)$$-1$
The blue line marks the conjugacy class containing complex conjugation.