Properties

Label 3.2e9_3e3.4t5.1
Dimension 3
Group $S_4$
Conductor $ 2^{9} \cdot 3^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$13824= 2^{9} \cdot 3^{3} $
Artin number field: Splitting field of $f= x^{4} - 4 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 63\cdot 79 + 23\cdot 79^{2} + 26\cdot 79^{3} + 14\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 + 62\cdot 79 + 66\cdot 79^{2} + 78\cdot 79^{3} + 75\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 28 + 17\cdot 79 + 39\cdot 79^{2} + 10\cdot 79^{3} + 55\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 40 + 15\cdot 79 + 28\cdot 79^{2} + 42\cdot 79^{3} + 12\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.