Properties

Label 3.2e9_11e2.6t11.7c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{9} \cdot 11^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$61952= 2^{9} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{4} + 2 x^{2} - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.2e3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 40 a + 7 + \left(14 a + 5\right)\cdot 47 + \left(42 a + 12\right)\cdot 47^{2} + \left(10 a + 10\right)\cdot 47^{3} + \left(20 a + 32\right)\cdot 47^{4} + \left(17 a + 39\right)\cdot 47^{5} + \left(44 a + 34\right)\cdot 47^{6} + \left(17 a + 27\right)\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 18 a + 29 + \left(36 a + 19\right)\cdot 47 + \left(30 a + 34\right)\cdot 47^{2} + \left(36 a + 25\right)\cdot 47^{3} + \left(38 a + 26\right)\cdot 47^{4} + \left(44 a + 21\right)\cdot 47^{5} + \left(5 a + 16\right)\cdot 47^{6} + \left(16 a + 10\right)\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 15 + 14\cdot 47 + 36\cdot 47^{2} + 46\cdot 47^{3} + 5\cdot 47^{4} + 41\cdot 47^{5} + 13\cdot 47^{6} + 28\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 40 + \left(32 a + 41\right)\cdot 47 + \left(4 a + 34\right)\cdot 47^{2} + \left(36 a + 36\right)\cdot 47^{3} + \left(26 a + 14\right)\cdot 47^{4} + \left(29 a + 7\right)\cdot 47^{5} + \left(2 a + 12\right)\cdot 47^{6} + \left(29 a + 19\right)\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 29 a + 18 + \left(10 a + 27\right)\cdot 47 + \left(16 a + 12\right)\cdot 47^{2} + \left(10 a + 21\right)\cdot 47^{3} + \left(8 a + 20\right)\cdot 47^{4} + \left(2 a + 25\right)\cdot 47^{5} + \left(41 a + 30\right)\cdot 47^{6} + \left(30 a + 36\right)\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 32 + 32\cdot 47 + 10\cdot 47^{2} + 41\cdot 47^{4} + 5\cdot 47^{5} + 33\cdot 47^{6} + 18\cdot 47^{7} +O\left(47^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(5,6)$
$(1,3,2)(4,6,5)$
$(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,5)(3,6)$$-3$
$3$$2$$(1,4)$$1$
$3$$2$$(1,4)(3,6)$$-1$
$6$$2$$(2,3)(5,6)$$-1$
$6$$2$$(1,4)(2,3)(5,6)$$1$
$8$$3$$(1,3,2)(4,6,5)$$0$
$6$$4$$(1,6,4,3)$$-1$
$6$$4$$(1,6,4,3)(2,5)$$1$
$8$$6$$(1,6,5,4,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.