Properties

Label 3.2e9_11.6t11.4c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{9} \cdot 11 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$5632= 2^{9} \cdot 11 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{4} - 10 x^{2} + 22 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd
Determinant: 1.2e3_11.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 16 a + 19 + \left(4 a + 1\right)\cdot 29 + \left(22 a + 25\right)\cdot 29^{2} + \left(6 a + 10\right)\cdot 29^{3} + \left(20 a + 27\right)\cdot 29^{4} + \left(10 a + 3\right)\cdot 29^{5} + 23\cdot 29^{6} + \left(21 a + 27\right)\cdot 29^{7} + \left(23 a + 22\right)\cdot 29^{8} + \left(6 a + 13\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 12 + 28\cdot 29 + 15\cdot 29^{2} + 18\cdot 29^{3} + 4\cdot 29^{4} + 16\cdot 29^{5} + 10\cdot 29^{6} + 24\cdot 29^{7} + 17\cdot 29^{8} + 13\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 16 a + 17 + \left(4 a + 20\right)\cdot 29 + \left(22 a + 13\right)\cdot 29^{2} + \left(6 a + 6\right)\cdot 29^{3} + \left(20 a + 23\right)\cdot 29^{4} + \left(10 a + 20\right)\cdot 29^{5} + 14\cdot 29^{6} + \left(21 a + 12\right)\cdot 29^{7} + \left(23 a + 24\right)\cdot 29^{8} + \left(6 a + 4\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 13 a + 10 + \left(24 a + 27\right)\cdot 29 + \left(6 a + 3\right)\cdot 29^{2} + \left(22 a + 18\right)\cdot 29^{3} + \left(8 a + 1\right)\cdot 29^{4} + \left(18 a + 25\right)\cdot 29^{5} + \left(28 a + 5\right)\cdot 29^{6} + \left(7 a + 1\right)\cdot 29^{7} + \left(5 a + 6\right)\cdot 29^{8} + \left(22 a + 15\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 17 + 13\cdot 29^{2} + 10\cdot 29^{3} + 24\cdot 29^{4} + 12\cdot 29^{5} + 18\cdot 29^{6} + 4\cdot 29^{7} + 11\cdot 29^{8} + 15\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 13 a + 12 + \left(24 a + 8\right)\cdot 29 + \left(6 a + 15\right)\cdot 29^{2} + \left(22 a + 22\right)\cdot 29^{3} + \left(8 a + 5\right)\cdot 29^{4} + \left(18 a + 8\right)\cdot 29^{5} + \left(28 a + 14\right)\cdot 29^{6} + \left(7 a + 16\right)\cdot 29^{7} + \left(5 a + 4\right)\cdot 29^{8} + \left(22 a + 24\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(4,6)$
$(1,4)$
$(1,3,2)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,5)(3,6)$$-3$
$3$$2$$(1,4)(3,6)$$-1$
$3$$2$$(1,4)$$1$
$6$$2$$(1,3)(4,6)$$-1$
$6$$2$$(1,2)(3,6)(4,5)$$1$
$8$$3$$(1,3,2)(4,6,5)$$0$
$6$$4$$(1,3,4,6)$$-1$
$6$$4$$(1,5,4,2)(3,6)$$1$
$8$$6$$(1,6,5,4,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.