Properties

Label 3.2e8_5_7e2.6t11.2
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{8} \cdot 5 \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$62720= 2^{8} \cdot 5 \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{4} - 5 x^{2} + 7 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 13 a + 24 + \left(21 a + 35\right)\cdot 53 + \left(2 a + 40\right)\cdot 53^{2} + \left(2 a + 50\right)\cdot 53^{3} + \left(30 a + 32\right)\cdot 53^{4} + \left(39 a + 3\right)\cdot 53^{5} + \left(28 a + 16\right)\cdot 53^{6} + \left(5 a + 51\right)\cdot 53^{7} +O\left(53^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 13 a + 30 + \left(21 a + 51\right)\cdot 53 + \left(2 a + 23\right)\cdot 53^{2} + \left(2 a + 49\right)\cdot 53^{3} + \left(30 a + 7\right)\cdot 53^{4} + \left(39 a + 27\right)\cdot 53^{5} + \left(28 a + 14\right)\cdot 53^{6} + \left(5 a + 8\right)\cdot 53^{7} +O\left(53^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 7 + 51\cdot 53 + 36\cdot 53^{2} + 12\cdot 53^{3} + 6\cdot 53^{4} + 42\cdot 53^{5} + 10\cdot 53^{6} + 8\cdot 53^{7} +O\left(53^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 40 a + 29 + \left(31 a + 17\right)\cdot 53 + \left(50 a + 12\right)\cdot 53^{2} + \left(50 a + 2\right)\cdot 53^{3} + \left(22 a + 20\right)\cdot 53^{4} + \left(13 a + 49\right)\cdot 53^{5} + \left(24 a + 36\right)\cdot 53^{6} + \left(47 a + 1\right)\cdot 53^{7} +O\left(53^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 40 a + 23 + \left(31 a + 1\right)\cdot 53 + \left(50 a + 29\right)\cdot 53^{2} + \left(50 a + 3\right)\cdot 53^{3} + \left(22 a + 45\right)\cdot 53^{4} + \left(13 a + 25\right)\cdot 53^{5} + \left(24 a + 38\right)\cdot 53^{6} + \left(47 a + 44\right)\cdot 53^{7} +O\left(53^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 46 + 53 + 16\cdot 53^{2} + 40\cdot 53^{3} + 46\cdot 53^{4} + 10\cdot 53^{5} + 42\cdot 53^{6} + 44\cdot 53^{7} +O\left(53^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)$
$(2,3)(5,6)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-3$
$3$ $2$ $(2,5)(3,6)$ $-1$
$3$ $2$ $(3,6)$ $1$
$6$ $2$ $(2,3)(5,6)$ $1$
$6$ $2$ $(1,2)(3,6)(4,5)$ $-1$
$8$ $3$ $(1,2,3)(4,5,6)$ $0$
$6$ $4$ $(2,3,5,6)$ $1$
$6$ $4$ $(1,4)(2,3,5,6)$ $-1$
$8$ $6$ $(1,3,5,4,6,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.