Properties

Label 3.2e8_41e2.12t33.1c1
Dimension 3
Group $A_5$
Conductor $ 2^{8} \cdot 41^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_5$
Conductor:$430336= 2^{8} \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + 8 x^{3} - 12 x^{2} + 17 x - 14 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 397 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 66 + 125\cdot 397 + 103\cdot 397^{2} + 244\cdot 397^{3} + 31\cdot 397^{4} +O\left(397^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 209 + 189\cdot 397 + 133\cdot 397^{2} + 339\cdot 397^{3} + 207\cdot 397^{4} +O\left(397^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 247 + 339\cdot 397 + 276\cdot 397^{2} + 291\cdot 397^{3} + 42\cdot 397^{4} +O\left(397^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 277 + 145\cdot 397 + 196\cdot 397^{2} + 258\cdot 397^{3} + 247\cdot 397^{4} +O\left(397^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 394 + 390\cdot 397 + 83\cdot 397^{2} + 57\cdot 397^{3} + 264\cdot 397^{4} +O\left(397^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$3$
$15$$2$$(1,2)(3,4)$$-1$
$20$$3$$(1,2,3)$$0$
$12$$5$$(1,2,3,4,5)$$-\zeta_{5}^{3} - \zeta_{5}^{2}$
$12$$5$$(1,3,4,5,2)$$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
The blue line marks the conjugacy class containing complex conjugation.