Properties

Label 3.2e8_3e6.6t8.9
Dimension 3
Group $S_4$
Conductor $ 2^{8} \cdot 3^{6}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$186624= 2^{8} \cdot 3^{6} $
Artin number field: Splitting field of $f= x^{6} - 9 x^{4} + 18 x^{2} - 6 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 5 a + 19 + \left(2 a + 1\right)\cdot 43 + \left(6 a + 41\right)\cdot 43^{2} + \left(34 a + 28\right)\cdot 43^{3} + 32 a\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 + 9\cdot 43 + 20\cdot 43^{2} + 24\cdot 43^{3} + 18\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 33 a + 5 + \left(24 a + 4\right)\cdot 43 + \left(2 a + 11\right)\cdot 43^{2} + \left(23 a + 11\right)\cdot 43^{3} + \left(41 a + 12\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 38 a + 24 + \left(40 a + 41\right)\cdot 43 + \left(36 a + 1\right)\cdot 43^{2} + \left(8 a + 14\right)\cdot 43^{3} + \left(10 a + 42\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 16 + 33\cdot 43 + 22\cdot 43^{2} + 18\cdot 43^{3} + 24\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 38 + \left(18 a + 38\right)\cdot 43 + \left(40 a + 31\right)\cdot 43^{2} + \left(19 a + 31\right)\cdot 43^{3} + \left(a + 30\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)(3,6)$
$(1,6,2)(3,5,4)$
$(1,2)(3,6)(4,5)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,4)(3,6)$ $-1$
$6$ $2$ $(1,2)(3,6)(4,5)$ $-1$
$8$ $3$ $(1,2,3)(4,5,6)$ $0$
$6$ $4$ $(2,3,5,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.