Properties

Label 3.2e8_3e4.6t8.9c1
Dimension 3
Group $S_4$
Conductor $ 2^{8} \cdot 3^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$20736= 2^{8} \cdot 3^{4} $
Artin number field: Splitting field of $f= x^{6} + 3 x^{4} + 3 x^{2} + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 24 a + 7 + \left(26 a + 16\right)\cdot 31 + \left(7 a + 5\right)\cdot 31^{2} + 19 a\cdot 31^{3} + \left(14 a + 26\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 17 + 25\cdot 31 + 21\cdot 31^{2} + 14\cdot 31^{3} + 22\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 29 + \left(5 a + 26\right)\cdot 31 + \left(22 a + 26\right)\cdot 31^{2} + 25 a\cdot 31^{3} + \left(2 a + 10\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 24 + \left(4 a + 14\right)\cdot 31 + \left(23 a + 25\right)\cdot 31^{2} + \left(11 a + 30\right)\cdot 31^{3} + \left(16 a + 4\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 14 + 5\cdot 31 + 9\cdot 31^{2} + 16\cdot 31^{3} + 8\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 29 a + 2 + \left(25 a + 4\right)\cdot 31 + \left(8 a + 4\right)\cdot 31^{2} + \left(5 a + 30\right)\cdot 31^{3} + \left(28 a + 20\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)(3,6)$
$(1,2,4,5)$
$(1,5,3)(2,6,4)$
$(1,3,2)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,4)(2,5)$$-1$
$6$$2$$(1,2)(3,6)(4,5)$$-1$
$8$$3$$(1,3,2)(4,6,5)$$0$
$6$$4$$(1,2,4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.