Properties

Label 3.2e8_3e4.6t8.8c1
Dimension 3
Group $S_4$
Conductor $ 2^{8} \cdot 3^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$20736= 2^{8} \cdot 3^{4} $
Artin number field: Splitting field of $f= x^{6} + 3 x^{4} + 3 x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 10 a + 28 + \left(21 a + 12\right)\cdot 29 + \left(3 a + 27\right)\cdot 29^{2} + \left(26 a + 5\right)\cdot 29^{3} + 12\cdot 29^{4} + \left(28 a + 21\right)\cdot 29^{5} + \left(23 a + 14\right)\cdot 29^{6} + \left(22 a + 12\right)\cdot 29^{7} + \left(a + 7\right)\cdot 29^{8} +O\left(29^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 19 a + 20 + \left(7 a + 22\right)\cdot 29 + \left(25 a + 24\right)\cdot 29^{2} + \left(2 a + 16\right)\cdot 29^{3} + \left(28 a + 19\right)\cdot 29^{4} + 15\cdot 29^{5} + \left(5 a + 19\right)\cdot 29^{6} + \left(6 a + 15\right)\cdot 29^{7} + \left(27 a + 22\right)\cdot 29^{8} +O\left(29^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 24 + 18\cdot 29 + 20\cdot 29^{2} + 6\cdot 29^{3} + 16\cdot 29^{4} + 17\cdot 29^{5} + 25\cdot 29^{6} + 11\cdot 29^{7} + 29^{8} +O\left(29^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 19 a + 1 + \left(7 a + 16\right)\cdot 29 + \left(25 a + 1\right)\cdot 29^{2} + \left(2 a + 23\right)\cdot 29^{3} + \left(28 a + 16\right)\cdot 29^{4} + 7\cdot 29^{5} + \left(5 a + 14\right)\cdot 29^{6} + \left(6 a + 16\right)\cdot 29^{7} + \left(27 a + 21\right)\cdot 29^{8} +O\left(29^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 9 + \left(21 a + 6\right)\cdot 29 + \left(3 a + 4\right)\cdot 29^{2} + \left(26 a + 12\right)\cdot 29^{3} + 9\cdot 29^{4} + \left(28 a + 13\right)\cdot 29^{5} + \left(23 a + 9\right)\cdot 29^{6} + \left(22 a + 13\right)\cdot 29^{7} + \left(a + 6\right)\cdot 29^{8} +O\left(29^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 5 + 10\cdot 29 + 8\cdot 29^{2} + 22\cdot 29^{3} + 12\cdot 29^{4} + 11\cdot 29^{5} + 3\cdot 29^{6} + 17\cdot 29^{7} + 27\cdot 29^{8} +O\left(29^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6)(3,4,5)$
$(1,3)(4,6)$
$(1,6)(3,4)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$3$$2$$(2,5)(3,6)$$-1$
$6$$2$$(1,3)(4,6)$$-1$
$8$$3$$(1,2,6)(3,4,5)$$0$
$6$$4$$(1,4)(2,6,5,3)$$1$
The blue line marks the conjugacy class containing complex conjugation.