Properties

Label 3.2e8_3e4.6t8.4c1
Dimension 3
Group $S_4$
Conductor $ 2^{8} \cdot 3^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$20736= 2^{8} \cdot 3^{4} $
Artin number field: Splitting field of $f= x^{4} - 8 x + 6 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 17 + 11\cdot 19^{2} + 2\cdot 19^{3} + 2\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 a + 11 + 18 a\cdot 19 + \left(8 a + 6\right)\cdot 19^{2} + \left(11 a + 6\right)\cdot 19^{3} + \left(18 a + 6\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 6 + 10\cdot 19 + 5\cdot 19^{2} + 19^{3} + 16\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 4 + 7\cdot 19 + \left(10 a + 15\right)\cdot 19^{2} + \left(7 a + 8\right)\cdot 19^{3} + 13\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.