Properties

Label 3.2e8_3e4.6t8.11c1
Dimension 3
Group $S_4$
Conductor $ 2^{8} \cdot 3^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$20736= 2^{8} \cdot 3^{4} $
Artin number field: Splitting field of $f= x^{6} + 3 x^{4} + 6 x^{2} + 6 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 19 a + 25 + \left(18 a + 20\right)\cdot 29 + \left(5 a + 9\right)\cdot 29^{2} + \left(20 a + 10\right)\cdot 29^{3} + 8\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 18 a + 13 + \left(10 a + 11\right)\cdot 29 + \left(21 a + 24\right)\cdot 29^{2} + \left(21 a + 28\right)\cdot 29^{3} + \left(5 a + 10\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 14 + 26\cdot 29 + 21\cdot 29^{2} + 24\cdot 29^{3} + 3\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 a + 4 + \left(10 a + 8\right)\cdot 29 + \left(23 a + 19\right)\cdot 29^{2} + \left(8 a + 18\right)\cdot 29^{3} + \left(28 a + 20\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 11 a + 16 + \left(18 a + 17\right)\cdot 29 + \left(7 a + 4\right)\cdot 29^{2} + 7 a\cdot 29^{3} + \left(23 a + 18\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 15 + 2\cdot 29 + 7\cdot 29^{2} + 4\cdot 29^{3} + 25\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,6)(2,3,4)$
$(2,5)(3,6)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$3$$2$$(2,5)(3,6)$$-1$
$6$$2$$(1,4)(2,6)(3,5)$$-1$
$8$$3$$(1,5,6)(2,3,4)$$0$
$6$$4$$(1,5,4,2)$$1$
The blue line marks the conjugacy class containing complex conjugation.