Properties

Label 3.2e8_3e3_7e2.6t11.3
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{8} \cdot 3^{3} \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$338688= 2^{8} \cdot 3^{3} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 12 x^{4} - 18 x^{3} + 30 x^{2} - 18 x + 12 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 40 + 31\cdot 61 + 8\cdot 61^{2} + 45\cdot 61^{3} + 20\cdot 61^{4} + 10\cdot 61^{5} + 60\cdot 61^{6} + 19\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 57 + 30\cdot 61 + 37\cdot 61^{2} + 11\cdot 61^{3} + 42\cdot 61^{5} + 33\cdot 61^{6} + 20\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 16 a + 37 + \left(30 a + 2\right)\cdot 61 + \left(58 a + 38\right)\cdot 61^{2} + \left(10 a + 4\right)\cdot 61^{3} + \left(19 a + 16\right)\cdot 61^{4} + \left(26 a + 23\right)\cdot 61^{5} + \left(20 a + 26\right)\cdot 61^{6} + \left(12 a + 25\right)\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 45 a + 53 + \left(30 a + 16\right)\cdot 61 + \left(2 a + 5\right)\cdot 61^{2} + \left(50 a + 18\right)\cdot 61^{3} + \left(41 a + 24\right)\cdot 61^{4} + \left(34 a + 30\right)\cdot 61^{5} + \left(40 a + 20\right)\cdot 61^{6} + \left(48 a + 17\right)\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 41 a + 40 + \left(53 a + 13\right)\cdot 61 + \left(7 a + 39\right)\cdot 61^{2} + \left(58 a + 26\right)\cdot 61^{3} + \left(11 a + 53\right)\cdot 61^{4} + \left(38 a + 55\right)\cdot 61^{5} + \left(8 a + 35\right)\cdot 61^{6} + \left(57 a + 25\right)\cdot 61^{7} +O\left(61^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 20 a + 20 + \left(7 a + 26\right)\cdot 61 + \left(53 a + 54\right)\cdot 61^{2} + \left(2 a + 15\right)\cdot 61^{3} + \left(49 a + 7\right)\cdot 61^{4} + \left(22 a + 21\right)\cdot 61^{5} + \left(52 a + 6\right)\cdot 61^{6} + \left(3 a + 13\right)\cdot 61^{7} +O\left(61^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,4)(2,5,6)$
$(4,6)$
$(1,4)(2,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,2)(3,5)(4,6)$ $-3$
$3$ $2$ $(3,5)$ $1$
$3$ $2$ $(3,5)(4,6)$ $-1$
$6$ $2$ $(1,4)(2,6)$ $-1$
$6$ $2$ $(1,4)(2,6)(3,5)$ $1$
$8$ $3$ $(1,3,4)(2,5,6)$ $0$
$6$ $4$ $(3,6,5,4)$ $-1$
$6$ $4$ $(1,2)(3,6,5,4)$ $1$
$8$ $6$ $(1,3,6,2,5,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.