Properties

Label 3.2e8_3e3.4t5.1c1
Dimension 3
Group $S_4$
Conductor $ 2^{8} \cdot 3^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$6912= 2^{8} \cdot 3^{3} $
Artin number field: Splitting field of $f= x^{4} - 4 x - 6 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 127 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 14 + 60\cdot 127 + 106\cdot 127^{2} + 96\cdot 127^{3} + 73\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 64 + 97\cdot 127 + 125\cdot 127^{2} + 19\cdot 127^{3} + 38\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 84 + 110\cdot 127 + 120\cdot 127^{2} + 48\cdot 127^{3} + 68\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 92 + 112\cdot 127 + 27\cdot 127^{2} + 88\cdot 127^{3} + 73\cdot 127^{4} +O\left(127^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.