Properties

Label 3.2e8_3e2_5e2_13e2.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 13^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$9734400= 2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{4} + 5 x^{2} + 25 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 72 a + 38 + \left(30 a + 62\right)\cdot 73 + 58 a\cdot 73^{2} + \left(4 a + 22\right)\cdot 73^{3} + \left(34 a + 24\right)\cdot 73^{4} + \left(57 a + 40\right)\cdot 73^{5} + \left(70 a + 68\right)\cdot 73^{6} + \left(23 a + 35\right)\cdot 73^{7} + \left(72 a + 49\right)\cdot 73^{8} +O\left(73^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 55 a + 27 + \left(70 a + 67\right)\cdot 73 + \left(9 a + 56\right)\cdot 73^{2} + \left(29 a + 70\right)\cdot 73^{3} + \left(53 a + 43\right)\cdot 73^{4} + \left(48 a + 26\right)\cdot 73^{5} + \left(16 a + 72\right)\cdot 73^{6} + \left(10 a + 65\right)\cdot 73^{7} + \left(18 a + 50\right)\cdot 73^{8} +O\left(73^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 16 + 58\cdot 73 + 66\cdot 73^{2} + 58\cdot 73^{3} + 47\cdot 73^{4} + 46\cdot 73^{5} + 41\cdot 73^{6} + 65\cdot 73^{7} + 64\cdot 73^{8} +O\left(73^{ 9 }\right)$
$r_{ 4 }$ $=$ $ a + 35 + \left(42 a + 10\right)\cdot 73 + \left(14 a + 72\right)\cdot 73^{2} + \left(68 a + 50\right)\cdot 73^{3} + \left(38 a + 48\right)\cdot 73^{4} + \left(15 a + 32\right)\cdot 73^{5} + \left(2 a + 4\right)\cdot 73^{6} + \left(49 a + 37\right)\cdot 73^{7} + 23\cdot 73^{8} +O\left(73^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 18 a + 46 + \left(2 a + 5\right)\cdot 73 + \left(63 a + 16\right)\cdot 73^{2} + \left(43 a + 2\right)\cdot 73^{3} + \left(19 a + 29\right)\cdot 73^{4} + \left(24 a + 46\right)\cdot 73^{5} + 56 a\cdot 73^{6} + \left(62 a + 7\right)\cdot 73^{7} + \left(54 a + 22\right)\cdot 73^{8} +O\left(73^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 57 + 14\cdot 73 + 6\cdot 73^{2} + 14\cdot 73^{3} + 25\cdot 73^{4} + 26\cdot 73^{5} + 31\cdot 73^{6} + 7\cdot 73^{7} + 8\cdot 73^{8} +O\left(73^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)$
$(2,3)(5,6)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-3$
$3$ $2$ $(1,4)$ $1$
$3$ $2$ $(1,4)(2,5)$ $-1$
$6$ $2$ $(2,3)(5,6)$ $-1$
$6$ $2$ $(1,4)(2,3)(5,6)$ $1$
$8$ $3$ $(1,2,3)(4,5,6)$ $0$
$6$ $4$ $(1,5,4,2)$ $-1$
$6$ $4$ $(1,5,4,2)(3,6)$ $1$
$8$ $6$ $(1,5,6,4,2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.