Properties

Label 3.2e8_3e2_5e2.6t8.2
Dimension 3
Group $S_4$
Conductor $ 2^{8} \cdot 3^{2} \cdot 5^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$57600= 2^{8} \cdot 3^{2} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{4} - 4 x^{2} - 4 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 127 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 8 + 25\cdot 127 + 37\cdot 127^{2} + 14\cdot 127^{3} + 113\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 65 + 9\cdot 127 + 73\cdot 127^{2} + 120\cdot 127^{3} + 10\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 76 + 66\cdot 127 + 19\cdot 127^{2} + 116\cdot 127^{3} + 77\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 105 + 25\cdot 127 + 124\cdot 127^{2} + 2\cdot 127^{3} + 52\cdot 127^{4} +O\left(127^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.