Properties

Label 3.2e8_3e2_5e2.6t8.1
Dimension 3
Group $S_4$
Conductor $ 2^{8} \cdot 3^{2} \cdot 5^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$57600= 2^{8} \cdot 3^{2} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{4} + 6 x^{2} - 24 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 271 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 48 + 119\cdot 271 + 163\cdot 271^{2} + 222\cdot 271^{3} + 102\cdot 271^{4} +O\left(271^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 117 + 10\cdot 271 + 74\cdot 271^{2} + 241\cdot 271^{3} + 262\cdot 271^{4} +O\left(271^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 147 + 228\cdot 271 + 82\cdot 271^{2} + 98\cdot 271^{3} + 237\cdot 271^{4} +O\left(271^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 230 + 183\cdot 271 + 221\cdot 271^{2} + 250\cdot 271^{3} + 209\cdot 271^{4} +O\left(271^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.