Properties

Label 3.2e8_29.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{8} \cdot 29 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$7424= 2^{8} \cdot 29 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{4} + 5 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.29.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 22\cdot 37 + 23\cdot 37^{2} + 33\cdot 37^{3} + 19\cdot 37^{4} + 19\cdot 37^{5} + 20\cdot 37^{6} + 31\cdot 37^{7} + 25\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 25 a + 34 + \left(19 a + 22\right)\cdot 37 + \left(24 a + 29\right)\cdot 37^{2} + \left(26 a + 29\right)\cdot 37^{3} + \left(9 a + 21\right)\cdot 37^{4} + \left(32 a + 25\right)\cdot 37^{5} + \left(24 a + 20\right)\cdot 37^{6} + \left(36 a + 4\right)\cdot 37^{7} + \left(32 a + 6\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 25 a + 14 + \left(19 a + 34\right)\cdot 37 + \left(24 a + 2\right)\cdot 37^{2} + \left(26 a + 36\right)\cdot 37^{3} + \left(9 a + 2\right)\cdot 37^{4} + \left(32 a + 3\right)\cdot 37^{5} + \left(24 a + 23\right)\cdot 37^{6} + \left(36 a + 21\right)\cdot 37^{7} + \left(32 a + 9\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 35 + 14\cdot 37 + 13\cdot 37^{2} + 3\cdot 37^{3} + 17\cdot 37^{4} + 17\cdot 37^{5} + 16\cdot 37^{6} + 5\cdot 37^{7} + 11\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 12 a + 3 + \left(17 a + 14\right)\cdot 37 + \left(12 a + 7\right)\cdot 37^{2} + \left(10 a + 7\right)\cdot 37^{3} + \left(27 a + 15\right)\cdot 37^{4} + \left(4 a + 11\right)\cdot 37^{5} + \left(12 a + 16\right)\cdot 37^{6} + 32\cdot 37^{7} + \left(4 a + 30\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 12 a + 23 + \left(17 a + 2\right)\cdot 37 + \left(12 a + 34\right)\cdot 37^{2} + 10 a\cdot 37^{3} + \left(27 a + 34\right)\cdot 37^{4} + \left(4 a + 33\right)\cdot 37^{5} + \left(12 a + 13\right)\cdot 37^{6} + 15\cdot 37^{7} + \left(4 a + 27\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(4,6)$
$(1,4)$
$(1,3,2)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,5)(3,6)$$-3$
$3$$2$$(1,4)$$1$
$3$$2$$(1,4)(3,6)$$-1$
$6$$2$$(2,3)(5,6)$$1$
$6$$2$$(1,4)(2,3)(5,6)$$-1$
$8$$3$$(1,3,2)(4,6,5)$$0$
$6$$4$$(1,6,4,3)$$1$
$6$$4$$(1,4)(2,6,5,3)$$-1$
$8$$6$$(1,6,5,4,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.