Properties

Label 3.2e8_29.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 2^{8} \cdot 29 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$7424= 2^{8} \cdot 29 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 4 x^{4} - 6 x^{3} - 10 x^{2} - 14 x - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.29.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 25 a + 52 + \left(8 a + 29\right)\cdot 67 + \left(29 a + 44\right)\cdot 67^{2} + \left(40 a + 47\right)\cdot 67^{3} + \left(51 a + 15\right)\cdot 67^{4} + \left(10 a + 15\right)\cdot 67^{5} + \left(4 a + 53\right)\cdot 67^{6} + \left(36 a + 8\right)\cdot 67^{7} +O\left(67^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 33 + 17\cdot 67 + 21\cdot 67^{2} + 26\cdot 67^{3} + 39\cdot 67^{4} + 35\cdot 67^{5} + 46\cdot 67^{6} + 5\cdot 67^{7} +O\left(67^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 20 a + 62 + \left(50 a + 18\right)\cdot 67 + \left(6 a + 5\right)\cdot 67^{2} + \left(28 a + 29\right)\cdot 67^{3} + \left(4 a + 10\right)\cdot 67^{4} + \left(14 a + 62\right)\cdot 67^{5} + 28\cdot 67^{6} + \left(25 a + 15\right)\cdot 67^{7} +O\left(67^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 29 + 30\cdot 67 + 62\cdot 67^{2} + 50\cdot 67^{3} + 20\cdot 67^{4} + 34\cdot 67^{5} + 64\cdot 67^{6} + 40\cdot 67^{7} +O\left(67^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 42 a + 18 + \left(58 a + 38\right)\cdot 67 + \left(37 a + 18\right)\cdot 67^{2} + \left(26 a + 46\right)\cdot 67^{3} + \left(15 a + 47\right)\cdot 67^{4} + \left(56 a + 6\right)\cdot 67^{5} + \left(62 a + 59\right)\cdot 67^{6} + \left(30 a + 14\right)\cdot 67^{7} +O\left(67^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 47 a + 8 + \left(16 a + 66\right)\cdot 67 + \left(60 a + 48\right)\cdot 67^{2} + 38 a\cdot 67^{3} + 62 a\cdot 67^{4} + \left(52 a + 47\right)\cdot 67^{5} + \left(66 a + 15\right)\cdot 67^{6} + \left(41 a + 48\right)\cdot 67^{7} +O\left(67^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(2,3)(4,5)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,6)(2,4)(3,5)$$-3$
$3$$2$$(2,4)(3,5)$$-1$
$3$$2$$(3,5)$$1$
$6$$2$$(2,3)(4,5)$$-1$
$6$$2$$(1,2)(3,5)(4,6)$$1$
$8$$3$$(1,2,3)(4,5,6)$$0$
$6$$4$$(2,3,4,5)$$-1$
$6$$4$$(1,6)(2,3,4,5)$$1$
$8$$6$$(1,3,4,6,5,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.