Properties

Label 3.2e8_269.4t5.1c1
Dimension 3
Group $S_4$
Conductor $ 2^{8} \cdot 269 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$68864= 2^{8} \cdot 269 $
Artin number field: Splitting field of $f= x^{4} - 8 x^{2} - 4 x + 6 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.269.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 149 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 26 + 33\cdot 149 + 63\cdot 149^{2} + 111\cdot 149^{3} + 40\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 48 + 149 + 120\cdot 149^{2} + 63\cdot 149^{3} + 31\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 88 + 130\cdot 149 + 55\cdot 149^{3} + 43\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 136 + 132\cdot 149 + 113\cdot 149^{2} + 67\cdot 149^{3} + 33\cdot 149^{4} +O\left(149^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.