Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 197 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 63 + 172\cdot 197 + 28\cdot 197^{2} + 5\cdot 197^{3} + 104\cdot 197^{4} +O\left(197^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 65 + 25\cdot 197 + 147\cdot 197^{2} + 90\cdot 197^{3} + 101\cdot 197^{4} +O\left(197^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 124 + 26\cdot 197 + 107\cdot 197^{2} + 96\cdot 197^{3} + 64\cdot 197^{4} +O\left(197^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 142 + 169\cdot 197 + 110\cdot 197^{2} + 4\cdot 197^{3} + 124\cdot 197^{4} +O\left(197^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3,4)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $3$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $6$ | $2$ | $(1,2)$ | $-1$ |
| $8$ | $3$ | $(1,2,3)$ | $0$ |
| $6$ | $4$ | $(1,2,3,4)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.