Properties

Label 3.2e8_167e2.12t33.1c2
Dimension 3
Group $A_5$
Conductor $ 2^{8} \cdot 167^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_5$
Conductor:$7139584= 2^{8} \cdot 167^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} + 8 x^{2} + 9 x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 479 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 105 + 299\cdot 479 + 184\cdot 479^{2} + 429\cdot 479^{3} + 253\cdot 479^{4} +O\left(479^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 193 + 272\cdot 479 + 152\cdot 479^{2} + 427\cdot 479^{3} + 275\cdot 479^{4} +O\left(479^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 340 + 208\cdot 479 + 4\cdot 479^{2} + 33\cdot 479^{3} + 387\cdot 479^{4} +O\left(479^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 366 + 379\cdot 479 + 360\cdot 479^{2} + 441\cdot 479^{3} + 181\cdot 479^{4} +O\left(479^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 434 + 276\cdot 479 + 255\cdot 479^{2} + 105\cdot 479^{3} + 338\cdot 479^{4} +O\left(479^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$3$
$15$$2$$(1,2)(3,4)$$-1$
$20$$3$$(1,2,3)$$0$
$12$$5$$(1,2,3,4,5)$$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
$12$$5$$(1,3,4,5,2)$$-\zeta_{5}^{3} - \zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.