Properties

Label 3.2e8_13e2.6t8.6c1
Dimension 3
Group $S_4$
Conductor $ 2^{8} \cdot 13^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$43264= 2^{8} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 2 x^{3} + 14 x^{2} - 10 x - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 10 + \left(2 a + 17\right)\cdot 31 + \left(28 a + 19\right)\cdot 31^{2} + 31^{3} + \left(12 a + 14\right)\cdot 31^{4} + \left(25 a + 7\right)\cdot 31^{5} + 26 a\cdot 31^{6} + \left(11 a + 14\right)\cdot 31^{7} + \left(2 a + 17\right)\cdot 31^{8} + \left(25 a + 10\right)\cdot 31^{9} +O\left(31^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 29 + 16\cdot 31 + 16\cdot 31^{3} + 29\cdot 31^{4} + 6\cdot 31^{5} + 30\cdot 31^{6} + 11\cdot 31^{7} + 4\cdot 31^{8} + 23\cdot 31^{9} +O\left(31^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 24 + 27\cdot 31 + 29\cdot 31^{2} + 29\cdot 31^{3} + 23\cdot 31^{4} + 30\cdot 31^{5} + 21\cdot 31^{6} + 30\cdot 31^{7} + 10\cdot 31^{8} + 25\cdot 31^{9} +O\left(31^{ 10 }\right)$
$r_{ 4 }$ $=$ $ a + 22 + 22\cdot 31 + \left(23 a + 23\right)\cdot 31^{2} + \left(8 a + 6\right)\cdot 31^{3} + \left(16 a + 13\right)\cdot 31^{4} + \left(30 a + 9\right)\cdot 31^{5} + \left(7 a + 13\right)\cdot 31^{6} + \left(30 a + 17\right)\cdot 31^{7} + \left(26 a + 28\right)\cdot 31^{8} + \left(16 a + 30\right)\cdot 31^{9} +O\left(31^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 27 a + 18 + \left(28 a + 17\right)\cdot 31 + \left(2 a + 11\right)\cdot 31^{2} + \left(30 a + 6\right)\cdot 31^{3} + \left(18 a + 6\right)\cdot 31^{4} + \left(5 a + 15\right)\cdot 31^{5} + \left(4 a + 28\right)\cdot 31^{6} + \left(19 a + 10\right)\cdot 31^{7} + \left(28 a + 10\right)\cdot 31^{8} + \left(5 a + 27\right)\cdot 31^{9} +O\left(31^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 30 a + 24 + \left(30 a + 21\right)\cdot 31 + \left(7 a + 7\right)\cdot 31^{2} + \left(22 a + 1\right)\cdot 31^{3} + \left(14 a + 6\right)\cdot 31^{4} + 23\cdot 31^{5} + \left(23 a + 29\right)\cdot 31^{6} + 7\cdot 31^{7} + \left(4 a + 21\right)\cdot 31^{8} + \left(14 a + 6\right)\cdot 31^{9} +O\left(31^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,4)(2,6,5)$
$(1,2,4)(3,6,5)$
$(2,6)(3,4)$
$(2,4)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,5)(4,6)$$-1$
$6$$2$$(1,4)(5,6)$$-1$
$8$$3$$(1,3,4)(2,6,5)$$0$
$6$$4$$(1,6,5,4)(2,3)$$1$
The blue line marks the conjugacy class containing complex conjugation.